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When participants in inquiry refer to an object, they may, unbeknown to them, construct the 

object differently. They thus tacitly attribute different idiosyncratic senses for their respective 

constructions and consequently draw different inferences regarding the phenomenon under 

investigation. A single person, too, may shift between alternative constructions of a 

mathematical object, assigning them different senses, thus arriving at apparently competing 

conclusions. Only upon acknowledging the different constructions can the person begin to 

explore whether and how the differing conclusions are in fact complementary. Building on 

empirical data of students engaged in interview-based tutorial activities targeting fundamental 

probability notions, we explicate breakdowns such false-contradiction introduces into learning 

processes yet suggest opportunities such ambiguity fosters. 

 

‗Seeing as....‘ is not part of perception. And for that reason it is like seeing and again not like. 

(Wittgenstein, 1953) 

 

Objectives 
Objects per se do not carry any meaning—all meaning is mentally constructed. The same 

principle holds for classroom learning materials, be these plastic tokens, spatial–numerical 

diagrams, or symbolic inscriptions. Yet this fundamental tenet of phenomenology and 

constructivism—that meanings of objects are mediated by implicit mental structures and are 

anyhow transparent in the ongoing Dasein of goal-oriented activity—may be difficult for a 

teacher to bear in mind let alone apply successfully in the real-time contingencies of engaged 

mathematics discourse. Moreover, students are often unaware of the constructed nature of their 

own mathematical perception of objects and therefore do not differentiate between objects per se 

(the distal stimuli) and their personal constructions of these objects (the proximal stimuli) 

(Wittgenstein, 1953). Consequently, teachers and students may be explicitly speaking about the 

same object yet implicitly ascribing to it diverging meanings and related inferential implications, 

and therefore their communication fidelity is a priori compromised (e.g., Borovcnik & Bentz, 

1991). Nevertheless, a teacher can be well aware that two or more students are seeing a 

mathematical object differently even though they are using similar lexical labels to index the 

same object, and a skilled teacher can capitalize on these covert ambiguities to orchestrate 

productive discursive negotiations (Moschkovich, 2008). Still, teachers cannot always interpret, 
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monitor, foster, or amend students‘ idiosyncratic constructions so that they accord sufficiently 

with normative constructions (i.e., so that the meanings are taken-as-shared, Cobb, 2005). Thus, 

covert communication breakdowns in classroom discourse may be more ubiquitous than one 

might expect, with interlocutors bearing personal meanings that overlap just enough to preclude 

overt breakdown. 

Yet is such covert polysemy and the communication breakdowns it engenders necessarily 

detrimental to learning? Here we wish to argue that some covert semiotic ―fuzziness‖ may in fact 

ultimately support collaborative learning, because it enables interlocutors the ostensible 

intersubjectivity requisite of mutually supportive discourse, even as they are seeing objects 

differently. Specifically, when students construct differently a semiotic artifact under joint 

inquiry, they may contribute to a conversation different mathematically valid assertions precisely 

because they are not cognizant of their different constructions. For example, if you and I are 

gazing at an array of six dots, I may see it as two rows of three dots each even as you see it as 

three columns of two dots each. Referring to the array, I might say that, ―It is two times three,‖ 

but then you might disagree that, ―It is three times two.‖ Notably the ―it‖ in each of our 

respective utterances does not refer to the ―objective‖ array itself but to our respective mental 

constructions of the array. Sorting out disagreement over the meaning of objects thus becomes an 

opportunity to co-examine the semiotic elements implicit to the conversation, e.g., the unitized 

groups of dots in the array. Namely, the conversation may shift from arguing over some ill-

defined mistaken-as-shared ‗it‘ to speaking about how we are seeing ‗it,‘ i.e., to figuring it out. 

So doing, we may discover the semiotic contingencies of our respective statements and formulate 

a mathematical assertion that reconciles their respective meanings in the form of the targeted 

mathematical content of the instructional activity, e.g., we may discover that ―2 x 3 = 3 x 2.‖  

This paper examines excerpts from one-to-one interview-based conversations between a 

researcher and three students, in which the students each sustained throughout a tutorial activity 

two different framings of a single iconic artifact, which they had been guided to construct so as 

to model a mathematical system under inquiry. Each framing of the object implied a different 

expectation for the behavior of this system, and the students‘ expectations shifted with their 

framing of the object. We argue that both mental constructions of the object were mathematically 

correct, if naively worded, and that the students were able to reconcile these constructions 

successfully only if they were aware of the contingency of their assertions on their implicit 

framings of the object. We further submit that the ambiguity of the object ultimately supported 

these students‘ learning, because it elicited the two key idea elements of the targeted 

mathematical notion and juxtaposed them for reflection. That is, embedding key idea elements of 

a targeted mathematical notion within a single semiotic artifact instantiated these elements as co-

present in the problem space, thus honing a generative confusion that supported the conjoining of 

these idea elements into the targeted conceptual composite. Thus we support embracing diverse 

perspectives, in line with the conference theme. 

 

Theoretical Framework 

In his Philosophical Investigations, Wittgenstein (1953) sets out by describing a Tower-of-

Babel scene, in which construction workers are able to collaborate only because they share 

referents for their otherwise arbitrary verbal utterances. Thus, if I ask for a ―brick‖ and you hand 

me a brick, we are capable of co-constructing an artifact, but if you instead handed me a bucket, 
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the premise of our collaboration would be compromised. Yet along with my frustration resulting 

from this patent miscommunication, we maintain, I may gain a useful realization of the language 

game underlying human intersubjectivity. Namely, as language breaks down, its normatively 

obscure equipmentality is disclosed for scrutiny (Heidegger, 1962). To the extent that language, 

writ large, is the internalized vehicle of human reasoning (Vygotsky, 1934/1962), understanding 

its semiotic mediation of ―objective‖ situations may be instrumental to reflecting on one‘s 

learning process, which necessarily requires the adoption of cultural forms of seeing and 

referring to aspects of one‘s personal, unreified phenomenology (Bamberger & diSessa, 2003; 

Goodwin, 1994; Stevens & Hall, 1998). 

In the brick-vs.-bucket communication breakdown, above, one and the same verbal utterance, 

―brick,‖ differentially referred to two objects in the joint perceptual field. Yet inherent to this 

miscommunication is that one and the same object was interpreted differentially—the object that 

you saw as a brick, I saw as a bucket. Such flagrantly conflicted constructions of distal stimuli, 

though reserved for rhetorical effect in philosophical discourse, may nevertheless underlie—if in 

a more nuanced caliber—challenges inherent to instructional discourse. In the case of the 

disciplines where unequivocal definitions are paramount to the production of texts (in the 

continental, multi-modal sense of ‗text‘), it thus becomes important to monitor for shared 

meanings of objects. 

Note that the sense that interlocutors ascribe to objects are not necessarily personally 

available-it is not the case that students are consistently conscious of how they are seeing an 

object, even as they are capable of describing what the object means in the context of 

disciplinary discourse, such as problem solving. Indeed, idiosyncratic constructions of objects 

may be by-and-large inaccessible (‗cognitively impenetrable,‘ Pylyshyn, 1973), unlike meanings, 

which may be verbally couched as rationalized inferences pertaining to a phenomenon under 

inquiry. Nevertheless, the very rationale of scholarly inquiry into students‘ understanding of 

instructional materials is the identification and articulation of their personal constructions of 

objects. This problematique of an analytic endeavor to name the ineffable psychological facets of 

human discourse has been treated before: 

We do not claim to make clear and explicit what the users of the unclear expression had 

unconsciously in mind all along. We do not expose hidden meanings, as the words ‗analysis‘ 

and ‗explication‘ would suggest; we supply lacks. We fix on the particular functions of the 

unclear expression that make it worthy troubling about, and then devise a substitute, clear 

and couched in terms of our liking, that fills those functions. (Quine, 1960, pp. 258-259) 

Whereas ambiguity of discourse readily suggests intersubjective situations, Quine orients us 

toward intrasubjective situations. Namely, by virtue of referring to an object by two different 

labels, one perforce brings out different meanings, demonstrating a phenomenon Quine called 

intrasubjective stimulus synonymy. For example, ―For each speaker, ‗Bachelor‘ and ‗Unmarried 

man‘ are stimulus-synonymous without having the same meaning in any acceptable defined 

sense of ‗meaning‘‖ (Quine, 1960, p. 46). 

In this paper, however, we present cases of intrasubjective stimulus polysemy and discuss 

their consequences for mathematical learning. Namely, we demonstrate how an individual 

student‘s competing perceptual constructions of a mathematical semiotic artifact initially create 

cognitive conflict between two inferences that are in fact both mathematically correct. These 

inferences appear to the student as conflicting, rather than complementary, because the student 
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tacitly equates the objective artifact with its perceptual construction. We highlight the 

indispensable role of instructional designers and mathematics teachers in both eliciting from 

students each of the apparently conflicting inferences and facilitating discourse that aims at 

exposing the different perceptual constructions underlying each inference. The vocabulary, 

constructs, and definitions necessarily generated so as to achieve these disambiguations are 

pivotal aims of the instructional process, because these discursive tools help students synthesize 

(Schön, 1981) tacit and mathematical views of the instructional materials. Yet what are the 

implications of this thesis for teachers‘ practice? 

Guiding students to construe mathematical objects in accord with disciplinary norms is 

generally an asymmetric process, in which a teacher enables a student to see things as she does 

and any alternative construction falls by the wayside (Goodwin, 1994; Stevens & Hall, 1998). 

Yet for some disciplinary content topics, multiple views of problems are intrinsic to 

mathematical discourse, so that fostering such ambiguity in classroom discourse may play a 

nurturing, rather than an obstructing role. For example, a sequence of coin tosses—Heads, Tails, 

Heads, Tails (HTHT)—may be construed as one of sixteen equiprobable elemental events in the 

sample space of the four-coin-flips experiment (1/16) or, alternatively, as the aggregate event ―2 

Heads and 2 Tails in any order‖ that has a 6/16 chance of occurring (on the contingency of 

mathematical definitions on social contract, see Barnes, Henry, & Bloor, 1996; Ernest, 2008; 

Weisstein, 2006). A student may sense that one must decide between these two mathematically 

valid constructions, thinking that HTHT cannot have both 1/16 and 6/16 chances of occurring. 

Namely, this student would experience a need to decide whether the object—the distal stimulus 

presented by the inscription ―HTHT‖—has this value or that value for the property of likelihood, 

where in fact the student is implicitly referring to different percepts but not articulating the 

implications of attending or not attending to the internal order of the four singleton events 

(Abrahamson, 2009). 

Indeed, in this paper, we present empirical data to argue that one challenge inherent to 

supporting students‘ sense making processes is that students are liable to implicitly equate 

mental constructions with objects per se and thus experience difficulty accepting, let alone 

reconciling, any competing meanings they may attribute to these objects. That is, when the 

students think they must make up their mind with respect to the assertions they express about a 

mathematical object, in fact these different assertions are not necessarily mutually exclusive but 

possibly complementary, because each assertion refers to a different mental construction of one 

and the same object. Differentiating these assertions on the basis of their underlying perpetual 

constructions is crucial for conceptual development in those cases where both assertions are 

conceptually pertinent. For example, acknowledging the ambiguity of HTHT may help a student 

understand that the probability of an aggregate event is the sum total of the probabilities of its 

elemental events (1/16 + 1/16 + 1/16 + 1/16 + 1/16 + 1/16 = 6/16). 

 

Background, Methods, and Research Focus 

The episodes analyzed herein come from a larger corpus of data collected over a succession 

of cumulative studies conducted as part of the Seeing Chance project to understand and promote 

probability learning (Embodied Design Research Laboratory, UC Berkeley). Specifically, we 

examine the behavior of 3 out of 28 middle-school participants in Abrahamson (2009). The study 

took place in a private school in the SF East Bay area (33% on financial aid; 10% minority 
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students), and all three focus students for this paper were ranked by their mathematics teachers as 

high achieving. The phenomenon of intrasubjective stimulus polysemy that we examine here was 

typical of all students, yet it elicited longer, richer, and more articulated deliberations from the 

older and higher-achieving students—perhaps because these students were more self-monitoring 

and self-exacting in their mathematical reasoning—and hence these study participants help us 

understand what may be a ubiquitous phenomenon characteristic of all students. Each student 

participated in a semi-structured clinical interview that lasted about one hour. 

The project was conducted in the design-based research approach, which typically examines 

some conjecture as to an underlying mechanism inherent to a hypothetical learning phenomenon 

by creating empirical contexts in which to examine this conjecture (Confrey, 2005). Emerging 

from study cycles of design, empirical implementation, and analysis, in which the researchers 

tune the learning environment and, reciprocally, their emerging understandings of learning 

phenomena, are new instructional materials or principles as well as ‗ontological innovations‘ 

(diSessa & Cobb, 2004), theoretical constructs that capture consistent patterns that the 

researchers discover in the empirical data. This paper is about intrasubjective stimulus polysemy, 

an ontological innovation that we are proposing. 

Central to the interview was a set of instructional materials designed to elicit students‘ 

population-to-sample informal inferences, which are mathematically correct though only 

qualitative and unwarranted by mathematical argumentation. Students are then guided to 

construct the expanded sample space of this experiment as a means of creating a context for the 

dyad to discuss differences in how natural perceptual inclination and formal mathematical 

analysis couch inferences with regard to probabilistic behavior of random generators. Here we 

will introduce only those materials that feature in the data under inquiry. The interview begins by 

showing participants a tub containing many green and blue marbles of equal numbers as well as 

a marbles scooper (see Figure 1a), a utensil for drawing out of the box a sample with a precise 

number of marbles that are spatially arranged in a particular permutation. Strictly speaking, this 

is a hypergeometric (without replacement) problem, yet the large population-to-sample ratio 

enables us to treat it as an approximation for the binomial. Participants are asked to offer their 

guess for the distribution of outcomes in a hypothetical experiment with this random generator. 

Next, participants are given a set of blank cards with a 2-by-2 table structurally resembling the 

scooper (see Figure 1b) and are guided to construct the sample space of the experiment and 

assemble in the form of the combinations tower (see Figure 1c). 

 

 

 

 

 

  
a.   b.  c. 

Figure 1. (a) The marble scooper; (b) one of many cards for conducting combinatorial analysis of 
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the experiment; and (c) the combinations tower—an assembly of the sample space in a format 

designed to resonate with students‘ inferences for the experiment.  

 

Whereas students by-and-large guessed correctly that the plurality of experimental outcomes 

would be of type ―2 green and 2 blue [in any order]‖ (hence 2g2b), they experienced difficulty in 

appreciating why analytic attention to the order of the four singleton events in each scoop may 

be advantageous to supporting their guess. Nevertheless, once they had completed constructing 

the combinations tower, participants appropriated this structure as a warrant for their guess by 

indexing the relatively greater number of 2g2b elemental events as compared to other aggregate 

events. In previous publications we attributed students‘ reluctance to attend to the combinations‘ 

internal order to a tension between tacit and mathematical constructions of the sample: whereas 

students naturally couch the experiment in terms of five (aggregate) events (no green, 1 green, 2 

green, 3 green, and 4 green), combinatorial analysis requires attention also to the internal order 

of the four singleton events and therefore produces sixteen (elemental) events.  

The current study focused on interview episodes in which participants switch between 

aggregate- and elemental-event constructions of a compound-event card containing four 

singleton events. We compared these episodes in an attempt to explore for relations between the 

participants‘ awareness of their constructions and their success in coordinating the tacit and 

mathematical formulations of the anticipated experimental outcome distribution.  

 

Results and Analyses 

Table 1, below, offers a preview of our results. For rhetorical clarity, we use the familiar 

duck-rabbit ambiguous figure. (Joseph Jastrow popularized it in the late 19th century so as to 

illustrate perceptual agency in constructing distal stimuli.) If a viewer is asked to infer the eating 

habits of this ambiguous creature, yet the viewer is unaware that his mental construction of the 

image keeps shifting (―duck…no, rabbit!‖), then the viewer will not understand his vacillating 

inferences (―fish…no, carrots!‖) and will take this inconsistency as marking confusion. If, 

however, the viewer can label each mental construction of this object as well as their critical 

disambiguating features (―beak…ears‖), then the viewer will be equanimous with respect to his 

conflicting inferences (cf. Tsal & Kolbet, 1985). 

 

Table 1. Inferential Reasoning for an Overtly Ambiguous Figure 

Distal Object 

Disambiguating 

Features Proximal Object Inference for Diet 

 

Beak Duck Fish 

Ears Rabbit Carrots 

 

Table 2, below, presents the less familiar case, from probability studies, of a compound event 

as an ambiguous figure. A viewer who attends to the particular configuration of green and blue 

cells in this object may construct it as one of sixteen unique equiprobable elemental events in the 

sample space. However, a viewer who ignores the internal order of cells in this object and 
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constructs it as 2g2b may interpret it as the aggregate event most likely to occur in the marbles-

scooping experiment. If, however, the viewer is unaware of her shifting personal constructions, 

she will interpret her shifting inferences as marking confusion. 

 

Table 2. Inferential Reasoning for a Covertly Ambiguous Figure  

Distal Object 

Disambiguating 

Features Proximal Object 

Inference for 

Distribution 

    

Order Elemental event Equiprobable 

Number Aggregate event Heteroprobable 

 

Each of the following three 6
th

-grade students, Lavi, Sima, and Razi, identified the completed 

combinations tower as resonating with their mathematically correct guesses for the outcome 

distribution of the marbles-scooping experiment. However, subsequent discussion suggested that 

their insight was unstably based on a global perception of relations among the combinations-

tower columns and that they were still struggling to align their insight with the ambiguous 

construction of the combinations tower‘s constituent elements. 

Lavi: “My Mind’s Going Back and Forth” 

The interviewer lifts out of the sample space two cards—one of the 3g1b cards and the 4g 

card—and asks Lavi to compare their likelihoods. The following conversation ensues: 

Lavi:  There‘s only four [ways] for getting three [3g1b]. I guess it wouldn‘t be chance…Oh, 

I guess it would be chance. And then there‘s only one way that there can be four [4g].  

Res.: So, what do you mean [by] ―It‘s not chance‖ and ―It is chance?‖  

Lavi: Ah, I don‘t know, that thought just kind of [popped] into my mind and I just let it 

come out.  

When Lavi says, ―It wouldn‘t be chance,‖ he is viewing the individual cards as representing 

heteroprobable aggregate events whose chance is indexed by the number of permutations in their 

respective columns. When he says, ―It would be chance,‖ he is viewing these same cards as 

equiprobable elemental events for which only chance, not logic, would cause greater frequency.  

The compound event is thus a physical object imbued with different mathematical constructions, 

and Lavi alternately refers to these competing constructions. However, he does not appear to 

realize that he is shifting his point of view, so he is confused. 

The interviewer repeats the question for another pair of cards. Lavi asks whether he should 

take these cards to mean ―a specific card or an amount of each color‖ and claims that all 

―specific cards‖ are equally likely. The interviewer asks Lavi to compare the cards on the basis 

of ―the amount,‖ i.e., to ignore placement. After some hesitation, Lavi nevertheless asserts, ―It is 

chance,‖ invoking the randomness of the sampling device (on the ‗equiprobability bias,‘ see Falk 

& Lann, 2008; LeCoutre, 1992). Throughout a subsequent series of questions, Lavi vacillates 

between viewing individual cards as ―ducks‖ or ―rabbits,‖ coming just short of reconciliation.  

Sima: Stuck on Rabbit 

Like Lavi, Sima begins by articulating the equiprobability of the sixteen compound events. 

She creates the term ―color-wise‖ to refer to the groups and ―place-wise‖ to refer to individual 
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cards and states that ―color-wise‖ the groups have different probabilities but place-wise ―they‘re 

equivalent.‖ Yet, once the interviewer asks her to compare two cards selected from different 

columns, she maintains that they have different likelihoods. Subsequently, she appears to 

experience difficulty in dislodging from the aggregate view and returning to the elemental 

view—she is ―stuck on rabbit‖ and insists that any 2g2b card is more likely than any 3g1b card. 

Only after the interviewer simulates random sampling from these sixteen cards and refers back to 

the initial experiment is Sima able to reassume equiprobability.  

Razi: Chooses Rabbit 

Like Lavi and Sima, Razy articulates that specific cards are equally likely yet that viewing 

them by the ―number of each color‖ makes some cards more likely than others. She appears to 

command greater fluency than Lavi and Sima in shifting between the competing constructions of 

the events, yet she incurs greater difficulty in articulating the implications of each view for the 

outcome distribution.  

Razi: The majority of the scoops would come out with two blues and two greens. 

Res.: A moment  ago you told me that each pattern has the same likelihood to show up. Is 

their a contradiction here? 

Razi: Yes and no. Before I said ―each specific pattern.‖ Now I‘m saying each pattern with 

two blues and two greens…. 

Res.: But do you still hold to the fact that each exact pattern has the same chance? 

Razi: I am not sure. 

Finally, when asked to compare another two cards, Razi becomes entrenched in the aggregate 

view. It appears that whereas Razi understands that there are two ways to see the object, she feels 

she must choose between ―duck‖ and ―rabbit.‖  

 

Conclusion 

Students‘ awareness of their perceptual constructions of ambiguous mathematical objects—

their intrasubjective stimulus polysemy—impacts their capacity to generate domain-specific 

constructs and, in turn, to coordinate tacit and analytic formulations of situated phenomena 

toward deep conceptual understanding. We have demonstrated this relation for the case of the 

binomial and will continue to pursue our conjecture as it plays out in the learning of other 

mathematical concepts.  
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