AME 521 Engineering Vibrations II

Fall 2025 Department of Mechanical Engineering University of Southern California

(Created on 2025-0502; Revised on 2025-0506)

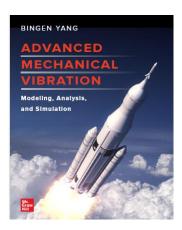
Description: 4 units

Multi-degree of freedom systems; continuous systems; gyroscopic systems; modal analysis; beams, rods, strings, shafts; membranes, plates, and cylindrical shells; numerical methods including Rayleigh Ritz method, Galerkin method, assumed-mode

method, and finite element methods; application problems.

Prerequisite: AME 420

Instructor	Professor Bingen (Ben) Yang Office: OHE 412F; Phone: (213) 740-7082; Email: bingen@usc.edu	
Class Meeting	Monday and Wednesday 6:00-7:50 pm, RTH 109	
Office Hour	Monday and Wednesday 3:30 – 5:00 pm, in office and at Zoom meeting	


Course Materials:

Textbook: Bingen Yang, 2025, Advanced Mechanical Vibration: Modeling, Analysis, and

Simulation, McGraw Hill. (1265989311 · 9781265989316).

Amazon.com: Advanced Mechanical Vibration: Modeling, Analysis, and Simulation:

9781265989316: Yang, Bingen: Books

Class Notes: Class notes and handouts (downloadable from the AME521 website)

AME 521 Website – D2L Brightspace: https://courses.uscden.net

Contact DEN for any questions on using the website.

Grading:	Three (3) online midterm exams (110 mins, 25% each) Project No final exam	75% 25%
	Total	100 %

Homework: 10 sets of non-credit homework problems will be assigned weekly (50 problems for the entire semester). Solutions to the homework will be provided. Timely and independent completion of the homework problems is important to understanding the course materials, and to good performance in the coursework.

Learning Objectives:

The objectives of this course are:

- To provide students with fundamental theories on linear vibrations for dynamic systems in a variety of engineering applications;
- To train students on how to apply those theories in modeling, analysis, and simulation of vibrating systems; and
- To help students develop skills of handling practical engineering problems.

Topics:

- Review of single-degree-of-freedom systems
- Multi-degree-of-freedom systems: establishment of equations of motion
 - Newton's laws
 - o Lagrange's equations
 - o Small oscillation and linearization
- Multi-degree-of-freedom systems: eigenvalue problems and modal analysis
 - o Eigenvalue problems and solutions
 - Natural modes of vibration
 - Steady-state response to harmonic excitations
 - o Time response via modal analysis
 - Damping in vibrating systems
 - o Gyroscopic effects
 - Use of MATLAB in analysis and simulation
- State equations and transfer function formulation
 - o State equations and solution via eigenvector expansion and numerical integration
 - o Transfer function formulation
 - Distributed transfer function method
- Distributed vibrating systems
 - Calculus of variations
 - Extended Hamilton's principles
 - o One-dimensional continua (bars, strings, shafts and beams)
 - o Eigenvalue problems
 - Modes of vibration
 - Eigenfunction expansion (modal analysis)

- Vibration of membranes
- Vibration of thin plates
- Distributed transfer function method
- Approximate methods for distributed systems
 - o Rayleigh's quotient
 - Assumed modes method
 - o Finite element method
- Applications
 - o Combined distributed-lumped systems
 - o Dynamic vibration absorption
 - o Dynamics of structures carrying moving subsystems

Course Schedule

Important Dates						
2025	5/09/29 Mi	dterm Exam 1 (110 mins)	Online exam			
2025	5/10/29 Mie	dterm Exam 2 (110 mins)	Online exam			
2025	5/12/03 Mie	dterm Exam 3 (110 mins)	Online exam			
2025	5/12/10 Pro	ject report due (Wedn., by 11:59 pm)	Online submission			

Week	Date	Materials Covered/Exams	HW/Project
		Review of single-degree-of-freedom systems	
		(AME420 course materials)	
1	8/25	Textbook: Chapters 1 and 2	
		Multi-degree-of-freedom (M-DOF) systems:	
		governing equations by Newtonian approach	HW 1 - 6 problems: 2.5 , 2.14 ,
	8/27	Textbook: Section 3.1	2.17, 3.1, 3.5, 3.6
2	9/1	Labor Day – No class	
		M-DOF systems: Lagrange Equations	
	9/3	Textbook: Section 3.2	
		M-DOF systems: linearization, and more	
		examples	HW 2 – 6 problems:
3	9/8	Textbook: Sections 3.3-3.6	3.8, 3.12, 3.13, 3.19, 3.22, 4.2
		M-DOF systems: eigenvalue problems	
	9/10	Textbook: Sections 4.1-4.4	
		M-DOF systems: free vibration, modal	
		analysis	HW3 – 6 problems:
4	9/15	Textbook: Sections 4.5-4.7	4.3, 4.4, 4.9, 4.13, 4.16, 22
		M-DOF systems: modal analysis	
	9/17	Textbook: Sections 4.8-4.10	
		M-DOF systems: damped systems	HW4 – 6 problems:
5	9/22	Textbook: Sections 5.1-5.4	4.23, 4.25, 5.2, 5.5, 5.9, 5.14
		M-DOF systems: general mechanical	
		systems	Project assignment (due by
	9/24	Textbook: Sections 5.5-5.7	December 10, in 2 ½ months)
6	9/29	Midterm Exam 1 – online	
	10/1	Calculus of variations	

		Textbook: Sections 6.1-6.3	
		Extended Hamilton's principle, 1-D continua	HW 5 – 6 problems:
7	10/6	Textbook: Sections 6.4-6.5	6.2, 6.9, 7.3, 7.4, 7.11, 7.12
		1-D distributed systems: governing equations	
	10/8	Textbook: Sections 7.1-7.4	
		Eigenvalue problems of 1-D continua	HW 6 – 5 problems:
8	10/13	Textbook: Sections 8.1-8.4	8.1, 8.5, 8.6, 8.9, 8.13
		Orthogonality of eigensolutions, modal	
		analysis	
	10/15	Textbook: Sections 8.5-8.6	
		Modal analysis of 1-D continua, damped 1-D	
		continua, steady-state response	HW 7 – 5 problems:
9	10/20	Textbook: Section 8.7-8.10	8.20, 8.25, 8.26, 8.30, 8.33
		Distributed transfer function method	
		(DTFM)	
	10/22	Textbook: Section 10.1-10.3	
		DTFM: eigensolutions of 1-D continua,	
		stepped systems	HW8 – 3 problems:
10	10/27	Textbook: Section 10.4-10.6	10.2, 10.6, 10.11
	10/29	Midterm Exam 2 online	
		Approximation methods: comparison and	
	11/2	admissible functions, Rayleigh Ritz method	
11	11/3	Textbook: Section 11.1-11.3	
	11/5	Approximation: the assumed modes method	HW 9 – 4 problems:
	11/5	Textbook: Section 11.4	11.1, 11.9, 11.16, 11.21
		Approximation: the finite element method,	
12	11/10	application – combined systems Textbook: Sections 11.5 and 12.1	
12	11/10	Application: combined systems	
	11/12	Textbook: Section 12.2	
	11/12	Application: structures under moving	
		subsystems	HW 10 – 3 problems:
13	11/17	Textbook: Sections 12.3	12.2, 12.6, 9.1
13	11/1/	Two-dimensional continua: membranes	12.2, 12.0, 5.1
	11/19	Textbook: Sections 9.1-9.2	
	11/17	Two-dimensional continua: plates	
14	11/24	Textbook: Sections 9.3-9.4	HW 10 due on 11/26
	11/26	Thanksgiving Break – No class Two dimensional continue: plates	
15	12/1	Two-dimensional continua: plates Project tips	
15		Midterm Exam 3 – online	Lost aloss
	12/3	Wildlerm Exam 3 – Online	Last class
		D 1 1 1 11 11 11 10 D1	
1.6	10/10	Project report due on Wedn. by 11:59 PM	
16	12/10	online submission	l