CE 526Engineering Mathematical Methods29741R(4 units)

VHE 214 MW 12-1:50PM 29709R 2025 Spring Semester — Course Syllabus

Professor	Vincent Lee, <u>vlee@usc.edu</u>		
Office	KAP 230B and OHE 200		
Phone	(213) 740-0568		
Wed Site	https://www.brightspacehelp.usc.edu/ (was Blackboard)		
Office Hours	TBA		
Teaching Assistant	TBD		
Email	l Through brightspacehelp.uc.edu		
Office Hours			

COURSE DESCRIPTION

Engineering Mathematical Methods for solutions of problems encountered in civil, mechanical and aerospace engineering

COURSE OBJECTIVES

Engineering problems discussed on a physical basis with solutions via mathematical tools: Fourier series; Fourier and Laplace transforms; partial differential equations, wave and Laplace equations. Duplicates credit in CE 525b. Recommended preparation: undergraduate multivariable calculus and ordinary differential equations.

LEARNING OBJECTIVES

After reviewing what we learned in our undergraduate Math/Calculus courses, we learn Fourier series, eigenvalues & functions, systems of ODE. Then we spent almost 2 months on PDE, when we solve the wave, heat and Laplace equations in both rectangular and polar coordinates. We then discuss transform methods in the last month.

Prerequisite	none				
Days, Time, Location	Monday		3:30 - 6:10 p.m.	RTH105	
Required Textbook	E. Kreyszig Advanced Engineering Mathematics 10 th ed. ISBN-13: 978-0470458365				
Required Course	Master of Science in Civil Engineering – Structural & other options see CEE catalogue				
Grading Schema	Homework	10	%		
	All Exams	90	%		
	Total	100	%		

CE 526 Engineering Mathematical Methods —Class Schedule

DATE Lecture		Lecture		Homework
Mode	WED	No	Tonico	Posted on Blackboard Due Wed Next Wh
Week	WED	No.	Topics	Duc Wea Next Wi
1 Jan13	1	L00 - Review - PreQuiz		
Jan15		3	L00A - PreQuiz Solutions	
2 Jan20	Jan20 Jan22	4	Jan20Monday Labor Day USC Holiday L01 - Fourier Series,	HW#1: L01
Jan22		5	L01 - Orthogonal Series Expansions	11VV#1: LU1
3	Jan29	6	L0 2- Eigenvalues, Eigenvectors & Eigenfunctions	HW#2: L02
4 Fe	Feb 3 7		L03 - System of ordinary Differential Equations	TIVV#2. LOZ
	Feb 5	8	Applications	HW#3: L03
		9	L04 - Partial Differential Equations (PDE)	1144113. 1103
5 Feb1	Feb10			
	Feb12	10	Method of Separation of Variables	HW#4: L04
6	Feb17 11 Fe		Feb17Monday President's Day USC Holiday	
12-1:50PM Wed		Wed	MIDTERM #1: Lectures 01-04	HW#5: L5.1-3
7	Feb24	12	L05.1-3 - One Dimensional (1D) Wave Equation	
7	Feb26	13	L05.4-5 - One Dimensional (1D) Beam Equation	HW#6: L05,06
0	Mar 3	14	L06.1,3 - (2D) Wave Equation	
8	Mar 5	15	L06.2 - Non-homogeneous PDE	HW#7; L06,07
9 Ma	Mar10	16	L06.3 - Non-homogeneous PDE cont	
,	Mar12	17	L07.1-4 – 1D Heat Equation	HW#8: L07
10	Mar17 18		L07.5 - 2D Heat Equation	
Mar19		19	L07.6 – Non-homogeneous Heat Equation	HW#9: L08
11	Mar24	Mar24 20 L08.1,2 – 2D Laplace Equation in Rectangular Coo		
12-1:50PM		Wed	MIDTERM #2: Lectures 05-09	HW#10: L09
12	Mar31	21	L08.3 2D Laplace Equation in Cylind. (Polar) Coord	
	Apr 2	22	L09.1 – 2D Wave Equation in Cylindrical Coordinates	HW#11 L10
13 Apr 7	Apr 7	23	L09.2– 2D Wave Equation (cont.): Symmetric case	
	Apr 9	24	L10 –Sturm-Liouville Problem-	HW#12,13:L11,
144 -	Apr14	25	L11 – Fourier Transform	
	Apr16	26	L11 – Fourier Transform, cont.	
15	Apr21	25	L12 Laplace Transform	
	Apr23	26	L12 Laplace Transform (cont.)	
16	Apr28 Apr30	26	Review of FINAL MIDTERM (No. 3): Lectures 07-12 Final MT#3	
	Apr30		rinai M1#3	

STATEMENT ON ACADEMIC INTEGRITY

USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one's own academic work from misuse by others as well as to avoid using another's work as one's own.

All students are expected to understand and abide by these principles. *SCampus,* the Student Guidebook, contains the Student Conduct Code in Section 11.00, while the recommended sanctions are located in Appendix A:

- http://www.usc.edu/dept/publications/SCAMPUS/gov/. Students will be referred to the Office of Student Judicial Affairs and Community Standards for further review, should there be any suspicion of academic dishonesty.
- The Review process can be found at: http://www.usc.edu/student-affairs/SJACS/.

STATEMENT FOR STUDENTS WITH DISABILITIES

Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (or to TA) as early in the semester as possible.

DSP Contact Information

Office Location: STU 301

• Open: 8:30 a.m. until 5:00 p.m., Monday through Friday.

• Phone number: (213) 740-0776