

EE515: Quantum Sensing: Machine Learning, Inference, and Information Units: 4 Time: Mon, Wed 2:00-3:50pm

Location: KAP 165

Instructor: Quntao Zhuang Office: PHE 606 Office Hours: TBA Contact Info: gzhuang@usc.edu

Catalogue Description

Basics of quantum mechanics, basics of quantum sensing, quantum theory of inference, information, and machine learning.

Course Description

It is a 4-unit course to introduce the basics of quantum sensing---the quantum theory of inference, information, and machine learning. Quantum information science and engineering has shown great promise in achieving better-than-classical performance in computing, communication, and sensing. Sensing is an arena where quantum technologies can achieve advantages over classical sensing technologies for practical applications in the near term. Quantum sensing and metrology studies the use of nonclassical resources to enhance the performance of measurements for a variety of sensing applications. As a prominent example, the Laser Interferometer Gravitational-wave Observatory (LIGO) injects nonclassical squeezed light into its Michelson interferometer to surpass the standard quantum limit (SQL) due to laser shot noise. Apart from LIGO, quantum metrology has also been exploited in target detection, microscopy, biological sensing and phase tracking. More recently, quantum sensing has found application in machine learning tasks, for example with intelligent quantum sensor networks. This course will introduce the theoretical foundation of quantum sensing and provide canonical examples of quantum advantages in different practical sensing scenarios.

The course starts from basic quantum mechanics, including both qubit systems and quantum optical systems modeled as harmonic oscillators. Then we will cover the basics of classical inference and classical machine learning, as a preliminary to the quantum versions that follows that. Finally, we will talk about some physical systems for quantum sensing. This course will introduce the basic tools and methodology to model and analyze quantum sensing protocols and apply those on realistic examples. Targeted at students with mature knowledge of complex linear algebra, this course provides students with state-of-the-art overview of quantum sensing and prepares them for further studies of the topic.

Learning Objectives

By the end of this course, students will be able to

- apply various paradigms of quantum sensing and quantum machine learning to applications
- analyze quantum sensing performance using acquired quantitative tools.
- analyze the advantage from entanglement and squeezing in sensing optical phase, including the case of multipartite entanglement leading to Heisenberg scaling in measurement precision using acquired skills.

Prerequisite(s): None

Recommended Preparation: Basic quantum mechanics on the level of EE 539. Linear algebra on the level of EE 141. Probability on the level of EE 364.

Course Notes

The course website will be on Brightspace or equivalent set-up to allow online access.

Technological Proficiency and Hardware/Software Required

None.

Required Readings and Supplementary Materials

Course notes will be distributed.

Optional Readings and Supplementary Materials

Carl W. Helstrom, Quantum Detection and Estimation Theory, Mathematics in Science and Engineering, Academic Press (February 11, 1976). ISBN 0-12-340050-3

Nielsen and Chuang, Quantum Information and Quantum Computation, Cambridge University Press. ISBN 978-1-107-00217-3

Sakurai, Modern Quantum Mechanics, Addison-Wesley or Cambridge University Press (any edition is fine) ISBN-10. 0805382917

John Preskill's lecture notes. http://www.theory.caltech.edu/~preskill/ph219/index.html#lecture

Jon Watrous's lecture notes https://cs.uwaterloo.ca/~watrous/LectureNotes.html

Umesh Vazirani's lecture notes https://people.eecs.berkeley.edu/~vazirani/quantum.html

Andrew Childs's lecture notes http://www.math.uwaterloo.ca/~amchilds/teaching/w08/co781.html

Seth Lloyd's notes http://web.mit.edu/2.111/www/notes09/spring.pdf

Participation

Attendance is mandatory.

Grading Breakdown

Assessment Tool (assignments)	% of Grade
Participation	5
Homework problems	15
Quiz	10
Midterm exam	20
Final exam	35
Project presentation	15
TOTAL	100

Grading Scale

Course final grades will be determined in a rescaled fashion. Your final grade will depend on the relative scores in the class.

Description and Assessment of Assignments

Assignment will be submitted in person on date of due before class starts every two weeks. Six assignments will be given. The grades of homework will usually be returned in two weeks.

Project Presentation

Work in groups of 2-3 and choose one of the following papers and find related papers (use google scholar citation function to find papers citing it, or find it in the references), and present the results of the paper and related works. Each presentation is about 10 minutes. Other papers are also possible with approval of the instructor. The presentation will be graded based on the depth and breadth of the presentation, as well as the application of course materials and acquired tools to interpret the results in the works. A 2-page summary report will be handed in after presentation. All members in the same group are expected to work with equal contribution and receive the same score for project presentation.

- (1) LIGO Collaboration, A gravitational wave observatory operating beyond the quantum shot-noise limit, Nature Physics volume 7, pages962–965 (2011)
- (2) Backes et al, A quantum enhanced search for dark matter axions, Nature volume 590, pages238–242 (2021).
- (3) Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone, Quantum Metrology, Phys. Rev. Lett. 96, 010401 (2006)
- (4) Guo X, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Christandl M, Neergaard-Nielsen J S and Andersen U L, Distributed quantum sensing in a continuous-variable entangled network, Nat. Phys. 16 281–4, 2020
- (5) Mankei Tsang, Ziv-Zakai Error Bounds for Quantum Parameter Estimation, Phys. Rev. Lett. 108, 230401 (2012)
- (6) Zheshen Zhang, Quntao Zhuang, Distributed quantum sensing, Quantum Sci. Technol. 6 043001 (2021)
- (7) Zhou, S., Zhang, M., Preskill, J. et al. Achieving the Heisenberg limit in quantum metrology using quantum error correction. Nat Commun **9**, 78 (2018).
- (8) J. M. Taylor et al, High-sensitivity diamond magnetometer with nanoscale resolution, Nature Physics volume 4, pages810–816 (2008).

- (9) Si-Hui Tan et al, Quantum Illumination with Gaussian States, Phys. Rev. Lett. 101, 253601 (2008)
- (10) Anthony J. Brady, Christina Gao, Roni Harnik, Zhen Liu, Zheshen Zhang, Quntao Zhuang, Entangled sensor-networks for dark-matter searches, PRX Quantum 3, 030333 (2022)

Course Evaluations

Course evaluation occurs at the end of the semester university-wide. Lecturer will ask for feedback in class as well.

Course Schedule

	Topics/Daily Activities	Readings/Preparation	Deliverables
Week 1	Introduction lecture.	lecture slides provided	
		ahead of time	
	Review of quantum mechanics:		
	states (superposition, density	Preskill Notes Chapt 2	
	matrix)	Nielsen and Chuang	
		Chapter 2	
Week 2	Review of quantum mechanics:	lecture slides provided	
	operations (unitary, quantum	ahead of time	HW 1 due
	channel, measurement)		
		Preskill Notes Chapt 3,	
	Quantum systems: finite	part of 4&10	
	dimensional (qubits, qdits, Pauli	Nielsen and Chuang	
	operators, gates, basic noise	Chapter 8, part of	
	model: depolarizing, phase flip,	Chapter 11	
	bit flip)		
Week 3	quantum systems: harmonic	lecture slides provided	
	oscillators (annihilation	ahead of time	
	operators, Wigner function, P		
	function, Q function)	Gaussian quantum	
		information, Weedbrook	
	Gaussian states and operations	et al.	
	(homodyne, heterodyne, number		
	measurement. Basic noise model:		
	loss, phase)		
Week 4	Review of quantum mechanics:	lecture slides provided	
	Distance Measure of quantum	ahead of time	HW2 due
	states (Trace distance, Fidelity.		
	Symplectic diagonalization)	Nielsen and Chuang	
		Chapter 9	
	Review for quiz		
Week 5	Quiz (open book)	lecture slides provided ahead of time	Quiz due
	Basic classical inference: Bayes		
	rule Hypothesis testing		
	(Probability, Prior probability and		
	posterior probability)		

	Topics/Daily Activities	Readings/Preparation	Deliverables
Week 6	Non-Bayesian hypothesis testing.	lecture slides provided	
	Classical radar target detection.	ahead of time	
	Parameter estimation		
	(activator deviations dession)		
	(estimator, deviations, classical Cramer-Rao bound)		
Week 7	Basics of classical machine	lecture slides provided	
WEEK /	learning: supervised learning	ahead of time	HW3 due
	Basics of classical machine		
	learning: unsupervised learning		
Week 8	Quantum state hypothesis	lecture slides provided	
	testing. (Basic theory. Helstrom	ahead of time	
	limit, quantum Chernoff bound)		
	Quantum Hypothesis testing		
	example (coherent state discrimination: Kennedy receiver,		
	Dolinar receiver)		
Week 9	Coherent state discrimination:	lecture slides provided	
Week 5	beyond the binary case	ahead of time	HW4 due
	(Conditional nulling)		
	Review for midterm		
Week 10	Midterm (open book)	lecture slides provided	
		ahead of time	
	Quantum channel hypothesis		
	testing (Basic theory,		
Week 11	entanglement advantage)	lastura clidas providad	
week 11	Bosonic quantum channel discrimination (Quantum	lecture slides provided ahead of time	HW 5 due
	Chernoff bound, receiver design)		1100 5 6 6 6
			Project begins
	Quantum illumination target		
	detection: I		
Week 12	Quantum illumination target	lecture slides provided	
	detection: II	ahead of time	Project: narrow down paper
			selection and let instructor
	Quantum parameter estimation		know
	(basic paradigm. Single		
	parameter estimation, basic theory. Cramer-Rao bound and		
	Quantum Fisher information)		
Week 13	Standard quantum limit and	lecture slides provided	
	Heisenberg scaling	ahead of time	HW 6 due
	Quantum sensing application:		Project: start making slides
	spectroscopy		_
	(Entanglement advantage)		

	Topics/Daily Activities	Readings/Preparation	Deliverables
Week 14	Quantum machine learning Intro to quantum machine learning (Quantum neural network) Quantum machine learning with	lecture slides provided ahead of time	Project: start writing report
Week 15	sensors Project Presentation	lecture slides provided	
WEEKIS	summary	ahead of time	Presentations in class, turn in report
FINAL	Final Exam		Refer to the final exam schedule in the USC <i>Schedule of Classes</i> at <u>classes.usc.edu</u> .

Statement on Academic Conduct and Support Systems

Academic Integrity

Unless otherwise noted, this course will follow the expectations for academic integrity as stated in the <u>USC</u> <u>Student Handbook</u>. The general USC guidelines on Academic Integrity and Course Content Distribution are provided in the subsequent "Statement on Academic Conduct and Support Systems" section.

For this class, we have the following specific rules.

Collaboration. In this class, you are expected to submit work that demonstrates your individual mastery of the course concepts.

Group work. Unless specifically designated as a 'group project,' all assignments are expected to be completed individually.

Computer programs. Plagiarism includes the submission of code written by, or otherwise obtained from someone else.

If found responsible for an academic violation, students may be assigned university outcomes, such as suspension or expulsion from the university, and grade penalties, such as an "F" grade on the assignment, exam, and/or in the course.

Please ask the instructor [and/or TA(s)] if you are unsure about what constitutes unauthorized assistance on an exam or assignment, or what information requires citation and/or attribution.

You may not record this class without the express permission of the instructor and all other students in the class. Distribution of any notes, recordings, exams, or other materials from a university class or lectures — other than for individual or class group study — is prohibited without the express permission of the instructor.

Use of Generative AI in this Course

Generative AI is encouraged: Any proper use of AI (e.g., ChatGPT and image generation tools) in this class is allowed. Learning to use AI is an emerging skill; this is an opportunity for you to discuss with the instructor appropriate use of these tools. Keep in mind the following:

- Al tools are permitted to help you brainstorm topics or revise work you have already written.
- If you provide minimum-effort prompts, you will get low-quality results. You will need to refine your prompts to get good outcomes. This will take work.
- Proceed with caution when using AI tools and do not assume the information provided is accurate or trustworthy If it gives you a number or fact: assume it is incorrect unless you either know the correct answer or can verify its accuracy with another source. You will be responsible for any errors or omissions provided by the tool. It works best for topics you understand.
- Al is a tool, but one that you need to acknowledge using. Please *include a paragraph at the end of any assignment explaining if, how, and why you used AI and indicate/specify the prompts you used to obtain the results*. Failure to do so is a violation of academic integrity policies.

Students and Disability Accommodations:

USC welcomes students with disabilities into all of the University's educational programs. The Office of Student Accessibility Services (OSAS) is responsible for the determination of appropriate accommodations for students who encounter disability-related barriers. Once a student has completed the OSAS process (registration, initial appointment, and submitted documentation) and accommodations are determined to be reasonable and appropriate, a Letter of Accommodation (LOA) will be available to generate for each

course. The LOA must be given to each course instructor by the student and followed up with a discussion. This should be done as early in the semester as possible as accommodations are not retroactive. More information can be found at <u>osas.usc.edu</u>. You may contact OSAS at (213) 740-0776 or via email at <u>osasfrontdesk@usc.edu</u>.

Support Systems:

Counseling and Mental Health - (213) 740-9355 – 24/7 on call

Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention.

<u>988 Suicide and Crisis Lifeline</u> - 988 for both calls and text messages – 24/7 on call

The 988 Suicide and Crisis Lifeline (formerly known as the National Suicide Prevention Lifeline) provides free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week, across the United States. The Lifeline is comprised of a national network of over 200 local crisis centers, combining custom local care and resources with national standards and best practices. The new, shorter phone number makes it easier for people to remember and access mental health crisis services (though the previous 1 (800) 273-8255 number will continue to function indefinitely) and represents a continued commitment to those in crisis.

<u>Relationship and Sexual Violence Prevention Services (RSVP)</u> - (213) 740-9355(WELL) – 24/7 on call Free and confidential therapy services, workshops, and training for situations related to gender- and powerbased harm (including sexual assault, intimate partner violence, and stalking).

Office for Equity, Equal Opportunity, and Title IX (EEO-TIX) - (213) 740-5086

Information about how to get help or help someone affected by harassment or discrimination, rights of protected classes, reporting options, and additional resources for students, faculty, staff, visitors, and applicants.

<u>Reporting Incidents of Bias or Harassment</u> - (213) 740-5086 or (213) 821-8298

Avenue to report incidents of bias, hate crimes, and microaggressions to the Office for Equity, Equal Opportunity, and Title for appropriate investigation, supportive measures, and response.

The Office of Student Accessibility Services (OSAS) - (213) 740-0776

OSAS ensures equal access for students with disabilities through providing academic accommodations and auxiliary aids in accordance with federal laws and university policy.

USC Campus Support and Intervention - (213) 740-0411

Assists students and families in resolving complex personal, financial, and academic issues adversely affecting their success as a student.

Diversity, Equity and Inclusion - (213) 740-2101

Information on events, programs and training, the Provost's Diversity and Inclusion Council, Diversity Liaisons for each academic school, chronology, participation, and various resources for students.

<u>USC Emergency</u> - UPC: (213) 740-4321, HSC: (323) 442-1000 – 24/7 on call

Emergency assistance and avenue to report a crime. Latest updates regarding safety, including ways in which instruction will be continued if an officially declared emergency makes travel to campus infeasible.

<u>USC Department of Public Safety</u> - UPC: (213) 740-6000, HSC: (323) 442-1200 – 24/7 on call Non-emergency assistance or information.

Office of the Ombuds - (213) 821-9556 (UPC) / (323-442-0382 (HSC)

A safe and confidential place to share your USC-related issues with a University Ombuds who will work with you to explore options or paths to manage your concern.

Occupational Therapy Faculty Practice - (323) 442-2850 or otfp@med.usc.edu

Confidential Lifestyle Redesign services for USC students to support health promoting habits and routines that enhance quality of life and academic performance.