
rev 8/5/24
1

 Introduction to Programming System Design

CSCI 455x (4 Units)

Description This course covers programming in Java and C++. Topics include review of basic
programming concepts such as control structures, functions, and arrays; coverage of more
advanced programming topics such as classes, recursion, inheritance, and linked lists; use
of a container class library to program with tools such as a map class and a sort function;
and an introduction to algorithm analysis. There will also be an emphasis on good
development techniques such as good code style and documentation, unit testing and use
of debugging tools. A second goal of the course is to introduce the Linux programming
environment, including tools such as the shell, simple shell scripts, and makefiles.

Prerequisite: minimal programming experience in some high-level language (can write and
debug programs with loops, if statements, and functions with parameters)

Instructor Claire Bono

Contact Info bono@usc.edu; (213) 764-4694

Lecture 3 hours / week

Lab 2 hours / week

Learning
objectives

By the end of the course students will be able to:

1. Given a description of the interface and behavior for a simple program create a
working object-oriented or procedural-oriented Java or C++ program to solve the
problem.

2. Write readable and modifiable object-oriented or procedural-oriented code.
3. Given source code for a short Java or C++ program or module predict its behavior

on specific inputs, including C++ programs that use dynamic data.
4. Given a specification for a Java or C++ class or function create a working

implementation of the class or function to match the specification.
5. Design and implement a unit test for a Java or C++ class.
6. Implement a recursive function to solve a problem.
7. Determine the computational complexity of some simple algorithms.
8. Choose appropriate and efficient data structures and algorithms to solve a

problem, employing appropriate modules from the Java library, when possible,
otherwise implementing them themselves.

9. Customize modules in the Java library for use in a specific application by using
callbacks.

10. Implement a program that uses Java exception handling to deal with user errors.
11. Use Linux development tools to do simple program development, including

creating, building, and debugging multi-file C/C++ and Java programs.

2

Textbook Big Java Early Objects Enhanced eText, 7th ed., by Cay Horstmann, Wiley, ISBN 978-1-

119-49909-1

Available on vitalsource.com (only ~$50 for a 5-month rental).

Lectures All healthy on-campus students are expected to attend classes in person. The zoom link
for online lecture is available for DEN students on d2l under Access to Online Lecture. For
DEN students who cannot attend synchronously or on-campus students who are too ill to
attend or are contagious, a recording of each lecture will also be available on d2l.

Assignments Programming assignments are graded on thorough testing, documentation, and style, as
well as correctness. All work to be submitted for the class is to be done individually unless
an assignment specifies otherwise.

Late policy for programming assignments. You may turn in a program up to two days late
for a penalty of 10% of the available points. So, for example, if you would have gotten a
70/100, you will get 60/100 instead (not 63). After this two-day grace period, a late program
receives no credit.

Computing
environment

You will be using the Vocareum cloud-based environment for program development, to be
introduced in the first lab. In addition, you may use an environment local to your machine
(e.g., IntelliJ, Eclipse, Visual C++, or command line plus text editor) for developing
programs. For programs you develop locally, you are responsible for making sure
your code compiles and runs on the Vocareum environment before submitting,
because we will be grading your programs there. Vocareum uses Java 8 (aka, 1.8),
and g++ 5.5.0.

Labs The lab is intended for practicing some of the techniques learned in class on the computer

in an environment where you can get immediate help from a lab assistant.

Labs meet online once a week for two hours. Every week you will be given the lab
exercises a few days before the lab: some require some advance preparation. You may
work on or complete the lab exercises before the lab period if you wish, but they are due
during your lab section. If you finish early, you are free to leave (once you get the lab
checked off) or spend the rest of the time working on your other CS 455 assignments.

Each set of lab exercises can earn you up to 3 - 5 points. There be will up to roughly 50 lab
points total. To take some of the pressure off the lab score only 80% of the available points
are applicable towards your final score in the class (but scaled to be worth 10% of the total
course score). This gives you some leeway if you have to miss a lab, or if you don't have
time to solve all of the problems in the two-hour session. Accordingly, if you have to miss a
lab, it’s not necessary to contact the instructor or lab TA.

Den students. Den students will complete their labs remotely and submit them
electronically. Den students do not have to be available during the lab session. They can
get help on the lab or other assignments through zoom online office hours, or by posting to
the piazza discussion board, or email to course staff.

3

Pre- and
In-class work

Points are awarded for student work done during lecture, and for pre-lecture videos. As
with the lab, only 80% of the pre- and in-class points count towards your final grade, to
account for missed lectures due to illness, etc. For DEN students watching the lecture
asynchronously, you will have up to a week after the live lecture to submit the in-class
work.

Exams All exams are closed book, closed note. Makeup exams will not be given. Absence due to a

serious illness will be an acceptable reason for missing an exam, and the final grade will be
scaled accordingly. The exam dates will be announced the first day of class. Non-local
DEN students take their exam at the same time as on-campus and local DEN students but
proctored at a location local to them. There will be no online exam offered for this course.

Website bytes.usc.edu/cs455

This is where you will get most of your course materials and has links to the following other
platforms we are using: DEN d2l (for videos of lectures and grades), Vocareum (for
program development and grading), piazza (for electronic discussions), and zoom (for
lectures and some office hours).

Grading The following table shows the relative weight of each part of the course work.

In-class work 5%
Programming assignments 30%
Labs 10%
Midterm Exam 1 10%
Midterm Exam 2 20%
Final Exam 25%
Total 100%

Policy on regrades (e.g., if you think there was a scoring mistake on your work): you have
until one week from when you get the graded work back to initiate a regrade. We'll
discuss the exact procedure for requesting a regrade once the course starts.

Course grades will be determined using the following scale:

Grading scale

 Letter grade Corresponding numerical point
range

A 95-100
A- 90-94
B+ 87-89
B 83-86
B- 80-82
C+ 77-79
C 73-76
C- 70-72
D+ 67-69
D 63-66
D- 60-62
F 59 and below

4

Academic

Integrity
USC's academic integrity policy prohibits plagiarism. All USC students are responsible for
reading and following the university standards of behavior which are described in The USC
Student Handbook.

In this course we encourage students to study together. This includes discussing high-level
general strategies to be used on individual assignments. But it would not, for example,
include jointly developing pseudo-code for an assignment solution with another student. All
work submitted for the class is to be done individually unless an assignment specifies
otherwise. Also, all exams are closed book, closed note.

Some examples of what is not allowed: using AI software (for example, GitHub Copilot or
ChatGPT) to create work you submit for this course, copying all or part of someone else's
work and submitting it as your own, giving another student in the class a copy of all or part
of your assignment solution, or pseudo-code for a solution, making an assignment solution
available to other students (for instance, putting it in a public github repository), consulting
with another student during an exam, using a solution or adapted solution to an assignment
that you found on the web. The outside code resources students will be allowed to use in
assignments for this class are limited to code written by the course staff for the purposes of
helping students in the course, or code from the textbook for this course. If you do use any
such code not written by you, you are required to acknowledge your sources in your
README file. If you have questions about what is allowed, please discuss it with the
instructor.

Because of past problems with plagiarism in this and other computer science courses, we
may be running all submitted programming assignments through sophisticated plagiarism-
detection software.

Violations of the academic integrity policy will be filed with the Office of Academic Integrity
and appropriate sanctions will be given. The sanctions are usually a lot more severe than
not submitting the assignment.

Students

with
Disabilities

Any student requesting academic accommodations based on a disability is required to
register with Office of Student Accessibility Services (OSAS) each semester. A letter of
verification for approved accommodations can be obtained from OSAS. Please be sure the
letter is delivered to the instructor as early in the semester as possible. OSAS is located in
GFS 120 and is open 8:30 a.m. - 5:00 p.m., Monday through Friday. The phone number
for OSAS is (213) 740-0776.

5

CSCI 455x Course Outline
Note: the exact lab assignments and order of topics may vary a little from this example.

Computing environment basics (1 lecture)

• Basic Linux commands
• Compiling and running Java programs on Linux
• Output and computation in Java

Lab: Development environment: basic Linux commands, compiling and running java programs

Using objects (2 lectures)
• Objects and object references
• Constructing objects
• Methods and method calls: accessors and mutators
• Primitive values; Strings
• Reading Java API documentation
• Examples: PrintStream, String, Rectangle, and Scanner classes

Lab: Write a program using a Java class; use Java documentation

Implementing classes (1 lecture)
• Instance variables
• Method definitions
• Scope and lifetime of variables
• Public interface vs. private
• Constructors
• Test programs
• Example: Student class

Lab: Implement a simple class to a specification

Control structures (1 lecture)

• If, while, for
• Boolean expressions
• Short-circuit evaluation, DeMorgan’s law
• Error-checking input
• Multi-way tests
• Dangling else

Arrays and Array Lists (2.5 lectures)

• Random access in arrays; ex: counting scores
• Partially filled arrays
• ArrayList class
• Arrays of objects
• Ex: array operations in Names class

o Incremental development
o Test-driven design
o Code refactoring

 Lab: Enhance a small program with loops and ArrayList

More on designing and defining classes (2 lectures)

• A class represents a single concept

6

• When static methods are used
• Methods: preconditions and postconditions

o Assert statements
• Instance variables vs. locals: minimize scope
• Class invariants

o Testing implementation invariants
• Parameter passing
• Methods with side-effects

o Defining immutable classes
o Returning references from inside objects
o Copying objects

Lab: Test assert statement; write invariants; line-oriented input

Algorithm analysis and big-O notation (1 lecture)

• Constant, linear and quadratic time
• Big-O of earlier examples
• Merge algorithm
• Finding big-O of Java library methods

Lab: Use debugger on supplied buggy program

Recursion (2 lectures)
• Thinking recursively
• helper functions
• computational complexity of recursive functions
• tree recursion
• backtracking

Lab: Write some recursive routines

Linear Container classes (2 lectures)

• java.utils LinkedList
• Lists vs. arrays
• Iterators
• Stacks
• Queues

Lab: Write some functions using LinkedLists, Stacks, and/or Queues.

Inheritance and Interfaces (1 lecture)

• Examples of inheritance
• Inheritance in Java graphics programs
• Overriding Object methods: toString, equals
• Interfaces: ex: sorting and Comparable and Comparator interfaces

Lab: Implement sort Comparator

Reading and Writing Text files; Exception handling (1 lecture)

• Scanners and PrintWriters
• Checked and unchecked exceptions
• Throw and catch exceptions

7

Lab: Enhance a program using exceptions for error-conditions.

Maps, Sets, and Sorting (4 lectures)

• Java Map and Set interfaces
o Iterating over a Map or Set
o Ex: concordance

• Binary search and log n time
• Overview of binary search trees
• Hash tables

o Hash functions
o Collision resolution
o Applications
o Big-O

• Sorting: insertion sort and mergesort
• Comparison of Map implementations
• Java sort methods, Comparable interface

Lab: Implement concordance using a Map; sort results by number of occurrences

 (C++) Differences between C++ and Java (2 lectures)
• Running g++ compiler
• I/O
• Stand-alone functions
• Parameter passing
• Fixed-size arrays
• C++ object model
• Defining classes

Lab: Use C++ vectors

 (C++) Dynamic data, pointers, and linked lists (3 lectures)
• Pointers and memory
• Delete
• Pointers to objects
• Linked lists
• Dynamic arrays
• C strings
• Pointer arithmetic

Lab: C++ debugger; implement various linked list functions

Separate compilation and make (2 lectures)
• Compilation units
• Header files
• Forward declarations
• Makefiles

Lab: practice with C strings

