Course Description
This course will cover the concepts of artificial intelligence and machine learning. Students will learn “traditional” AI topics such as agents, search, logic and knowledge representation as a basis for machine learning. Machine learning topics will be classification systems, training models with several methodologies, support vector machines, decision trees, and ensemble learning and random forests. Additionally, students will learn the Python programming language as a basis for all labs and assignments.

Learning Objectives and Outcomes
Students will learn the following material:

- Understand the structure and use of intelligent agents
- Understand how to solve problems by searching for a solution
- Understand the use and importance of constraint satisfaction problems
- Understand first-order logic and how to use it to solve problems
- Understand how to represent knowledge in AI-based systems
- Understand how to program in Python to solve machine intelligence problems
- Understand how classification systems are built and used
- Understand how machine intelligent models are trained
- Understand support vector machines as a machine learning model
- Understand decision trees as a machine learning model
- Understand ensemble learning and random forests as a machine learning model

Prerequisite(s): none
Co-Requisite(s): none
Concurrent Enrollment: none
Recommended Preparation: One semester programming course or equivalent experience
Course Notes
The course is for a letter grade. All labs, assignments, and lecture notes will be posted to Blackboard.

Required Readings and Supplementary Materials
Artificial Intelligence: A Modern Approach, Russell and Norvig, 3rd edition
Hands-On Machine Learning with Scikit-Learn and TensorFlow, Aurelien Geron, 2017

Optional Readings and Supplementary Materials
Python for Everyone, Horstmann and Necaise, 2nd edition

Description and Assessment of Assignments
There will be labs most weeks. There will also be assignments – like bigger labs. There will also be a three-part final project.

Grading Breakdown

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Points</th>
<th>% Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs (12 total)</td>
<td>180</td>
<td>30%</td>
</tr>
<tr>
<td>Assignments (5 total)</td>
<td>220</td>
<td>30%</td>
</tr>
<tr>
<td>Final Project (3 parts)</td>
<td>400</td>
<td>40%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>800</td>
<td>100%</td>
</tr>
</tbody>
</table>

Grading Scale (Example)
Course final grades will be determined using the following scale
A 95-100
A- 90-94
B+ 87-89
B 83-86
B- 80-82
C+ 77-79
C 73-76
C- 70-72
D+ 67-69
D 63-66
D- 60-62
F 59 and below

Assignment Submission Policy
Labs: Labs are to be completed by Sunday 11:59 pm the week they are assigned.

Assignments and Final Project: Assignments are due at 11:59 pm on the due date included in the assignment. The 3 parts of the final project will have different length due dates but will also be due at 11:59 pm on their due date.

Grading Timeline
It is anticipated that most grading will be completed within one week of the due date.
Late work
Assignments submitted up to 24 hours late will receive a 20% deduction. Assignments between 24 and 48 hours will receive a 50% deduction. Assignments more than 48 hours late will receive a grade of 0.

Any exceptions to this late grading policy must be requested and approved in advance.

Synchronous session recording notice
If not cited elsewhere, let students know that synchronous sessions will be recorded and provided to all students asynchronously (generally through recorded Zoom sessions, integrated into Blackboard). Information for faculty on recording class sessions can be found on the Academic FAQs for Faculty on the USC COVID-19 Resource Center.]
Course Schedule: A Weekly Breakdown

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics/Daily Activities</th>
<th>Readings and Homework</th>
<th>Labs/Assignments Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Introduction to AI; Intelligent Agents</td>
<td>Russell and Norvig chs 1 – 2.3</td>
<td>Lab 1 – First Python program</td>
</tr>
<tr>
<td></td>
<td>Introduction to Python; Programming with Numbers and Strings</td>
<td>Horstmann and Necaise, chs 1 – 2</td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>Decisions in Python; Introduction to Loops</td>
<td>Horstmann and Necaise, ch 3 – 4.5</td>
<td>Lab 2 – Decisions/Loops</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assignment 1</td>
</tr>
<tr>
<td>Week 3</td>
<td>Structure of Agents; Solving Problems by Searching</td>
<td>Russell and Norvig ch 2.4 – 3.2</td>
<td>Lab 3</td>
</tr>
<tr>
<td></td>
<td>Loops; Lists in Python</td>
<td>Horstmann and Necaise, ch 4.6 – 4.9, 6</td>
<td>Assignment 2</td>
</tr>
<tr>
<td>Week 4</td>
<td>Searching for a Solution</td>
<td>Russell and Norvig ch 3.3-3.6</td>
<td>Lab 4</td>
</tr>
<tr>
<td></td>
<td>Tuples and Dictionaries</td>
<td>Horstmann and Necaise, ch 8.2-8.3</td>
<td>Assignment 3</td>
</tr>
<tr>
<td>Week 5</td>
<td>Beyond Classical Search</td>
<td>Russell and Norvig ch 4</td>
<td>Lab 5</td>
</tr>
<tr>
<td></td>
<td>Functions in Python</td>
<td>Horstmann and Necaise, ch 5</td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td>Python File Input</td>
<td>Horstmann and Necaise, ch 7.1 - 7.2</td>
<td>Lab 6</td>
</tr>
<tr>
<td></td>
<td>Constraint Satisfaction Problems</td>
<td>Russell and Norvig ch 6</td>
<td>Assignment 4</td>
</tr>
<tr>
<td>Week 7</td>
<td>Files and Exceptions in Python</td>
<td>Horstmann and Necaise, ch 7</td>
<td>Lab 7</td>
</tr>
<tr>
<td></td>
<td>Objects and Classes</td>
<td>Horstmann and Necaise, ch 9</td>
<td></td>
</tr>
<tr>
<td>Week 8</td>
<td>Knowledge Representation</td>
<td>Russell and Norvig ch 12</td>
<td>Lab 8 – Install and test Sci-Kit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assignment 5</td>
</tr>
<tr>
<td>Week 9</td>
<td>Introduction to Machine Learning</td>
<td>Geron chs 1-2</td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Topic</td>
<td>Chapter</td>
<td>Labs</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Week 10 | Classification | Geron ch 3 | Lab 9 – Classification with Sci-Kit
| | | | Final Project Part 1 |
| Week 11 | Training Models | Geron ch 4 | Lab 10 – Training Models with Sci-Kit
| | | | Final Project Part 2 |
| Week 12 | Support Vector Machines | Geron ch 5 | Lab 11 – Support Vector Machines with Sci-Kit |
| Week 13 | Decision Trees | Geron ch 6 | Lab 12 – Decision Trees with Sci-Kit
| | | | Final Project Part 3 |
| Week 14 | Ensemble Learning and Random Forests | Geron chs 7 | |
| Week 15 | Dimensionality Reduction; Introduction to Artificial Neural Networks | Geron ch 8 and 10 | |
Statement on Academic Conduct and Support Systems

Academic Conduct:

Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards”.

Students and Disability Accommodations:

USC welcomes students with disabilities into all of the University’s educational programs. The Office of Student Accessibility Services (OSAS) is responsible for the determination of appropriate accommodations for students who encounter disability-related barriers. Once a student has completed the OSAS process (registration, initial appointment, and submitted documentation) and accommodations are determined to be reasonable and appropriate, a Letter of Accommodation (LOA) will be available to generate for each course. The LOA must be given to each course instructor by the student and followed up with a discussion. This should be done as early in the semester as possible as accommodations are not retroactive. More information can be found at osas.usc.edu. You may contact OSAS at (213) 740-0776 or via email at osasfrontdesk@usc.edu.

Support Systems:

Counseling and Mental Health - (213) 740-9355 – 24/7 on call
studenthealth.usc.edu/counseling
Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention.

National Suicide Prevention Lifeline - 1 (800) 273-8255 – 24/7 on call
suicidepreventionlifeline.org
Free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week.

Relationship and Sexual Violence Prevention Services (RSVP) - (213) 740-9355(WELL), press “0” after hours – 24/7 on call
Studenthealth.usc.edu/sexual-assault
Free and confidential therapy services, workshops, and training for situations related to gender-based harm.

Office for Equity, Equal Opportunity, and Title IX (EEO-TIX) - (213) 740-5086
eeo-tix.usc.edu
Information about how to get help or help someone affected by harassment or discrimination, rights of protected classes, reporting options, and additional resources for students, faculty, staff, visitors, and applicants.

Reporting Incidents of Bias or Harassment - (213) 740-5086 or (213) 821-8298
usc-advocate.symplicity.com/care_report
Avenue to report incidents of bias, hate crimes, and microaggressions to the Office for Equity, Equal Opportunity, and Title for appropriate investigation, supportive measures, and response.

The Office of Student Accessibility Services (OSAS) - (213) 740-0776
osas.usc.edu
OSAS ensures equal access for students with disabilities through providing academic accommodations and auxiliary aids in accordance with federal laws and university policy.

USC Campus Support and Intervention - (213) 821-4710
campussupport.usc.edu
Assists students and families in resolving complex personal, financial, and academic issues adversely affecting their success as a student.

Diversity, Equity and Inclusion - (213) 740-2101
diversity.usc.edu
Information on events, programs and training, the Provost’s Diversity and Inclusion Council, Diversity Liaisons for each academic school, chronology, participation, and various resources for students.

USC Emergency - UPC: (213) 740-4321, HSC: (323) 442-1000 – 24/7 on call
dps.usc.edu, emergency.usc.edu
Emergency assistance and avenue to report a crime. Latest updates regarding safety, including ways in which instruction will be continued if an officially declared emergency makes travel to campus infeasible.

USC Department of Public Safety - UPC: (213) 740-6000, HSC: (323) 442-120 – 24/7 on call
dps.usc.edu
Non-emergency assistance or information.

Office of the Ombuds - (213) 821-9556 (UPC) / (323-442-0382 (HSC)
ombuds.usc.edu
A safe and confidential place to share your USC-related issues with a University Ombuds who will work with you to explore options or paths to manage your concern.

Occupational Therapy Faculty Practice - (323) 442-3340 or otfp@med.usc.edu
chan.usc.edu/otfp
Confidential Lifestyle Redesign services for USC students to support health promoting habits and routines that enhance quality of life and academic performance.