

ISE 535 Data Mining - Section 719 Units: 4 Spring 2024 - MW 5:00 p.m. Location: GFS 106

Instructor: Cesar Acosta Office: GER 216 Office Hours: T 3 p.m. (online) Contact Info: <u>acostame@usc.edu</u>

Teaching Assistant: TBD **Office:** online **Office Hours:** TBD **Contact Info:** TBD

Teaching Assistant: TBD **Office:** online **Office Hours:** TBD **Contact Info:** TBD

Course Description

This course is about data analytics tools, methods, and applications. It focuses on data mining, Data Visualization, and Unsupervised Learning Methods. The course shows how to do feature engineering and how to reduce data complexity. Data visualization techniques are reviewed to find useful information from spatial data, now available from different online providers.

Unsupervised Learning Methods are used for clustering analysis, anomaly detection, and dimension reduction. The course reviews many unsupervised learning methods and shows how to apply them by means of case studies for model construction and evaluation.

The main computational tool is the R language. Libraries for statistical analysis, data visualization, and statistical learning are reviewed. RStudio is the interface of choice.

Prerequisite(s): None.

Recommended Preparation Expected to have knowledge of Engineering Statistics at the level of ISE 225 and working knowledge of a programming language.

Learning Objectives and Outcomes

In this course students learn to

- Preprocess dataframes (missing, duplicates, and data types)
- Understand the importance of Dimensionality Reduction.
- Apply Principal Components for Data Reduction.
- Apply clustering methods for unsupervised learning.
- Learn and apply Discriminant Analysis for classification.
- Use statistical learning Classification methods (Naïve Bayes, discriminant analysis)
- Apply Classification methods for unbalanced data.
- Apply data visualization tools on spatial data.
- Use association rules for mining market basket data.

Course Notes

The course material is available on Blackboard.

Technological Proficiency and Hardware/Software Required

The R programming language and the RStudio IDE will be used.

Required Textbook

This course does not require a textbook.

Supplementary Materials (References)

- James G., *An Introduction to Statistical Learning*, Springer, 2013 (ISLR) ISBN 978-1-4614-7137-0
- Shmueli, Data Mining for Business Analytics, Wiley, 2018, ISBN 9781118879368
- Tan P., Steinbach M., Kumar V., *Introduction to Data Mining*, 2ed., Pearson, 2018, ISBN 978-0133128901

Description and Assessment of Assignments

- Midterm will be in-class based on the schedule and 2 hours length.
- Final Examination a two-hour comprehensive exam scheduled by USC.
- **Homework** are assigned every other week. Homework is based on the material of the previous and current week. Must be submitted by the due date, during the class session. No late homework to be accepted.

Grading Policy

Assignment	Points	% of Grade
Homework	100 each (6 homework assignments)	30
Midterm	100	30
Final	100	40
TOTAL		100

Grading Scale (Course final grades will be determined using the following scale)

А	95-100	B-	80-82	D+	67-69
A-	90-94	C+	77-79	D	63-66
B+	87-89	С	73-76	D-	60-62
В	83-86	C-	70-72	F	59 and below

Assignment Submission Policy

Assignments should be typewritten and clean. They should be submitted in class by the due date. Email submissions and late submissions are not allowed. No make-up exams are considered.

Timeline and Rules for submission

Assignments are to be returned the week after submission. Solutions will be released soon after the homework submission date.

535-598 Course Schedule: A Weekly Breakdown

	Date	Topics/Daily Activities	Homework	Files	R Files
1	Jan 8 - Jan 10	Introduction to Data Mining for Descriptive and Predictive Analytics. Introduction to R, RStudio, and rmarkdown.	HW1 R base with rmarkdown	Overview DMining Rbase RStudio	Exercise1 Cars93 auto
2	Jan 15 (recorded) - Jan 17	Statistical Analysis with R – Random Variables The Multivariate Normal Distribution. Kernel Density Estimator.	HW1 due HW2 R base plotting	stat2	qq2 kernels
3	Jan 22 - Jan 24	Statistical Analysis with R – Tests Test vs. Confidence Interval. Hypothesis Testing on <i>k</i> populations.	HW2 due	ht2	simulation 2pop kpop
4	Jan 29 - Jan 31	Unsupervised Learning. Principal Components Analysis (PCA). Dimensionality Reduction, Feature Extraction.	HW3 PCA	pca, examples	Banknote Stockreturns universities
5	Feb 5 - Feb 7	Unsupervised Learning. Clustering Methods. K-Means clustering. Hierarchical clustering	HW3 due	unsupervised kmeans hierarchical	simulated kmeans hierarchical husarrests
6	Feb 12 - Feb 14	Tidyverse R library (readr, tidyr, dplyr, stringr) Data Visualization library ggplot2	HW4 clustering	dplyr4 ggplot	StudyArea ggts2, mpg
7	Feb 19 (recorded) Feb 21	Unsupervised Learning. Clustering Methods. Density-based Spatial Clustering (DBSCAN) Model-based Clustering. Mixtures.	HW4 due	dbscan modelbased	simulation2 geyser, dbscan contourpoints diabetes
8	Feb 26 - Feb 28	Midterm Exam			
9	Mar 4 – Mar 6	Unsupervised Learning. Mining marketing data. Association Rules. Performance measures		rules	fplates groceries
10	Mar 11- Mar 13	Spring Break			
11	Mar 18 - Mar 20	Classification – Part 1. Entropy vs Gini index. KNN, Naïve Bayes.	HW5 Clustering	classification knn1, nbayes2	nbayes, tan, nb2.csv bostonknn4
12	Mar 25 - Mar 27	Classification – Part 2 Discriminant Analysis (linear, quadratic)	HW5 due	slides	admission wine
13	Apr 1 - 3	Classification – Part 3. Rule learners.		slides	
14	Apr 8 - Apr 10	Classifying Unbalanced Data . New metrics, Sensitivity, Specificity, False Positive rate (FPR), Recall, Precision. ROC Curve, and the AUC.	HW6	slides	roc5
15	Apr 15 - Apr 17	Data Visualization. R library ggmap. Spatial and geographical visualization.	HW6 due	slides2	map22, map33 choropleths
16	Apr 22 - Apr 24	Review			
	TBD	Final Exam 2 p.m.			