
SYLLABUS

Applied and Cloud Computing for Electrical Engineers
EE 547: Spring 2024 (2 units)

This course introduces tools and concepts to build and deploy full stack software solutions in modern com-

puting environments. It is a project-driven course that develops from concept to application. The course

is intended for graduate electrical engineering students with prior programming experience. Students will

learn about technologies and practices essential for modern application deployment. The course covers

three main areas: (1) cloud technologies and integration, (2) frontend and backend programming, and

(3) deployment in global computing infrastructure. Students gain hands-on experience with virtualization

and cloud environments and learn about concepts that apply across computing platforms.

Instructor: Brandon Franzke

Email: franzke@usc.edu

Office: EEB 504B

Hours: Tuesday: 12:00 – 13:30

Thursday: 11:00 – 13:00 (remote)

Lecture

Tuesday (section: 31250)

15:30 – 17:20

Discussion

Friday (section: 30404)

14:00 – 14:50

Enrollment is in-person ONLY. Attendance is mandatory to all lectures. Taping or recording lectures or

discussions is strictly forbidden without the instructor’s explicit written permission.

Teaching assistants

TA: Amir Ziashahabi

Email: ziashaha@usc.edu

Office: (see canvas)

Grader: Sudesh Kumar Santhosh Kumar

E-mail: santhosh@usc.edu

Hours: (by appointment)

Course materials

[1] “Cloud Computing: Concepts, Technology & Architecture”, Thomas Erl, Ricardo Puttini, Zaigham

Mahmood, Prentice Hall, 2013. (required, online: USC libraries).

[2] “Cloud Native Patterns: Designing change-tolerant software”, 1st edition, Cornelia Davis, Manning,

2019. (required, online: USC libraries).

[3] “The Good Parts of AWS”, Daniel Vassallo and Josh Pschorr, 2020. (optional).

[4] “Speaking JavaScript: An In-Depth Guide for Programmers”, Axel Rauschmayer, O’Reilly Media,

2013. (required, https://exploringjs.com/es5)

[5] “MongoDB: The Definitive Guide”, 3rd edition, Shannon Bradshaw, Eoin Brazil, and Kristina

Chodorow, O’Reilly Media, 2019. (optional, online: USC libraries).

[6] “Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement”,

2nd edition, Luc Perkins, Eric Redmond, and Jim R. Wilson, Pragmatic Bookshelf, 2018. (optional,

online: USC libraries).

https://exploringjs.com/es5


[7] “The Road to React”, Robin Wieruch, 2023. (online: https://github.com/the-road-to-learn-react/

the-road-to-react).

[8] “The Road to GraphQL”, Robin Wieruch, 2018. (online: https://github.com/the-road-to-graphql/

the-road-to-graphql).

NOTE: Texts are secondary to in-class lecture material and homework sets.

Piazza https://piazza.com/usc/spring2024/ee547

Canvas https://canvas.usc-ece.com

Electronically submit homework and view grades. You will receive a registration email during the first

week of classes. Contact Dr. Franzke with technical issues.

Autolab https://autolab.usc-ece.com

Electronically submit programming homework for auto-grading. You will receive a registration email

during the first week of classes. Contact Dr. Franzke with technical issues.

Learning objectives

Upon completion of this course, a student will be able to:

• Understand and apply key concepts in cloud computing, such as serverless architectures and mi-

croservices.

• Develop full-stack applications using modern backend and frontend technologies, integrating asyn-

chronous programming and data security principles.

• Deploy and manage applications on cloud platforms, utilizing a range of cloud services and under-

standing deployment strategies.

• Implement and manage databases, selecting appropriate data models and storage solutions for

application needs.

• Utilize containerization technologies effectively for development and deployment of applications.

• Employ best practices in software lifecycle management, including continuous integration and

deployment.

https://github.com/the-road-to-learn-react/the-road-to-react
https://github.com/the-road-to-learn-react/the-road-to-react
https://github.com/the-road-to-graphql/the-road-to-graphql
https://github.com/the-road-to-graphql/the-road-to-graphql
https://piazza.com/usc/spring2024/ee547
https://canvas.usc-ece.com
https://autolab.usc-ece.com


Course Outline (tentative)

Topics Recommended Reading Homework

Week 1

09 Jan

Architecture (local vs. dis-

tributed), containers, virtual-

ization, cloud computing.

[1] Ch. 3-5.

Week 2

16 Jan

JavaScript and Node.js.

HTTP servers.

[1] Ch. 6, 8. [2] Ch. 1. [4] Ch.

1, 7-13.

HW 1 assigned.

Week 3

23 Jan

REST APIs. Backend: Express

middleware and routing.

[4] Ch. 15-17. HW 2 assigned, HW 1 due (25 Jan).

Week 4

30 Jan

Serverless platforms. AWS

Lambda.

[1] Ch. 17-18. [2] Ch. 2-3. HW 3 assigned, HW 2 due (01 Feb).

Week 5

06 Feb

Asynchronous Node.js. De-

bugging techniques. Testing

frameworks.

[4] Ch. 14.

Week 6

13 Feb

NoSQL databases. MongoDB.

Node.js integration.

[5] Ch. 2-4, 7. HW 4 assigned, HW 3 due (11 Feb).

Week 7

20 Feb

Quiz 1 (week 1-6).
Frontend: HTML, CSS, &

JavaScript.

HW 4 due (18 Feb).

Week 8

27 Feb

Frontend: React, Compo-

nents, & State.

[7]. HW 5 assigned,

Week 9

05 Mar

Full stack development. Au-

thentication and OAuth flows.

[1] Ch. 7, 10. HW 6 assigned, HW 5 due (07 Mar).

12 Mar No class, Spring Break.

Week 10

19 Mar

Backend development prac-

tices. SQL overview.

[2] Ch. 11. [5] Ch. 8. [6] Ch.

2(1,2), 7(1,2)-8(1).

Preliminary proposal due. (21 Mar)

Week 11

26 Mar

Project meetings. HW 6 due (26 Mar).

Week 12

02 Apr

GraphQL API. Microservice ar-

chitectures.

[8]. [2] Ch. 4-5, 9. HW 7 assigned. Revised proposal

due. (01 Apr)

Week 13

09 Apr

Cloud storage. Cloud deploy-

ments.

[1] Ch. 13, 16. HW 7 due (11 Apr). HW 8 assigned.

Week 14

16 Apr

Advanced cloud deployment.

CI/CD

[1] Ch. 12. [2] Ch. 6-7. Status report due. (19 Apr)

Week 15

23 Apr

Quiz 2 (week 7-14).
Project wrap-up.

HW 8 due (21 Apr).

02 May Technical review and demos, 14:00 - 17:00.

07 May Project deliverables, due 17:00.

Grading Procedure

Homework (50%) Homework is assigned every 1-2 weeks. Assignments include a mix of applied and

programmatic problems. Your total homework score sums your best homework scores (as a percentage)

after removing the one lowest score (of minimum 50%). You may discuss homework problems with

classmates but each student must submit their own original work. Cheating warrants an “F” on the

assignment. Turning in identical homework establishes a rebuttable presumption of cheating.

Late homework is accepted with a 0.5% deduction per hour, up to 48-hours – no exceptions. Technical

issues while submitting are not grounds for extension. No submissions will be accepted 48-hours after

the due date. Graders score what is submitted and will not follow up if the file is incorrect, incomplete,

or corrupt. It is your responsibility to ensure you submit the correct files and that they are accessible.

Quizzes (20%) Quizzes are short (60-minute) non-cumulative assessments that cover the most recent

material (approximately 5-weeks). Quizzes highlight important concepts and methods. They occur

during weeks 7 and 14 (tentative). You may use a single 8.5”x11” reference sheet (front and back OK).



You may not use any additional resources. Quizzes include multiple-choice and short answer questions.

They may also include free-response or open-ended questions to demonstrate conceptual understanding.

You are expected to write reasonably correct code as well as determine expected behavior of novel

computer code. Grading primarily follows correct reasoning but may include deductions for major syntax

errors, algorithmic inefficiency, or poor implementation.

Final project (30%) This course culminates with a final project in lieu of a final exam. Teams of three

students (in rare cases, teams of two with instructor approval) design and implement a complete software

product that connects two or more independent asynchronous components (often frontend and backend).

The instructor will guide teams having difficulty identifying a suitable application. Teams are encouraged

to devise solutions to novel problems of personal interest to their background or research. But teams may

build an application similar to existing services or tools provided their efforts demonstrate understanding

of the development stack and the product lifecycle — from idea to deployment to maintenance. All

projects must obtain the instructor’s written approval. Teams will prepare and present/demo their

approved project and show how it applies course material, concepts, and best-practices.

Course Grade

A if 90 - 100 points, B if 80 - 89 points, C if 70 - 79 points, D if 60 - 69 points, F if 0 - 59 points.

(“+” and “–” at ≈ 2.5% of grade boundary).

Cheating

Cheating is not tolerated on homework or exams. Penalty ranges from F on assignment or exam to F in

course to recommended expulsion.



Final Project

Project Requirements

Project topics must include sufficient scope and apply course knowledge to a useful end. The project must

compose at least two distinct units that operate and act independently but provide greater function when

acting together. The project must demonstrate comprehensive understanding of the entire development

stack and the product lifecycle from idea to deployment to maintenance. Additional requirements and

guidelines will be discussed closer to the commencement of the project.

All projects must use Node.JS as the primary language unless approved explicitly in writing by the in-

structor. But projects may use additional languages for tooling and support. Projects must use GraphQL

to expose some API or service to consumers. The instructor may provide additional requirements when

introducing the final project assignment.

Grading and Milestones

Topic proposal (initial and revised) week 11 3% + 7%

Status report - Design, components, integration week 14 7%

Technical review and demo final 25%

Project report 20%

Design and source code 35%

Video 3%

Deliverables and demo

Topic proposal: describe the problem, proposed technical approach, and expected outcomes. It should

communicate that your topic is adequately prepared and it should outline immediate next steps.

But the proposal is merely a guidepost and reasonable deviations in method, approach, and scope

are expected.

Written report: summarize the topic, provide relevant background (theoretical or applied), timeline

and contributions, and document challenges and extensions. It should provide discussion suffi-

cient that an uninformed expert can understand the models, analytic decisions, outcomes, and

implementation. Teams should provide quantifiable metrics to justify engineering tradeoffs.

Technical review and demo: Approximately 15 minutes (depends on class size) to describe the topic

problem and solution. It should provide only what is necessary to understand the what and why

and include minimal theoretical background. The instructor will provide a technical reference

slide-deck template that must be completed in advance of the demo session.

Source code: submitted as a GitHub repository archive file (zip). It must include README file(s)

that describe the repository structure, execution instructions, and special technical requirements.

Video: a 4-minute video that describes the topic, your implementation, and your results. You may

choose to upload this to a video sharing site such as YouTube but that is not required.



Academic Conduct

Plagiarism

Presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a se-
rious academic offense with serious consequences. Please familiarize yourself with the discussion of
plagiarism in SCampus in Section 11, Behavior Violating University Standards https://scampus.usc.
edu/1100-behavior-violating-university-standards-andappropriate-sanctions. Other forms of academic
dishonesty are equally unacceptable. See additional information in SCampus and university policies
on scientific misconduct, http://policy.usc.edu/scientific-misconduct. Discrimination, sexual assault,
and harassment are not tolerated by the university. You are encouraged to report any incidents to
the Office of Equity and Diversity http://equity.usc.edu or to the Department of Public Safety http:
//capsnet.usc.edu/department/department-public-safety/online-forms/contactus. This is important for
the safety of the whole USC community. Another member of the university community – such as a
friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on
behalf of another person. The Center for Women and Men http://www.usc.edu/studentaffairs/cwm/
provides 24/7 confidential support, and the sexual assault resource center webpage http://sarc.usc.edu
describes reporting options and other resources.

Academic Integrity

Academic integrity is critical the assessment and evaluation we perform which leads to your grade. In
general, all work should be your own and any sources used should be cited. Gray-areas occur when
working in groups. Telling someone how to do the problem or showing your solution is a VIOLATION.
Reviewing examples from class or other sources to help a fellow classmate understand a principle is fine
and encouraged. All students are expected to understand and abide by these principles. SCampus, the
Student Guidebook, contains the University Student Conduct Code in Section 10, while the recommended
sanctions are located in Appendix A. Students will be referred to the Office of Student Judicial Affairs
and Community Standards for further review, should there be any suspicion of academic dishonesty.

Support Systems

A number of USC’s schools provide support for students who need help with scholarly writing. Check
with your advisor or program staff to find out more. Students whose primary language is not English
should check with the American Language Institute http://dornsife.usc.edu/ali, which sponsors courses
and workshops specifically for international graduate students. The Office of Disability Services and Pro-
grams http://sait.usc.edu/academicsupport/centerprograms/dsp/home index.html provides certification
for students with disabilities and helps arrange the relevant accommodations. If an officially declared
emergency makes travel to campus infeasible, USC Emergency Information http://emergency.usc.edu
will provide safety and other updates, including ways in which instruction will be continued by means of
blackboard, teleconferencing, and other technology.

Academic Accommodations

Any student requiring academic accommodations based on a disability is required to register with Disabil-
ity Services and Programs (DSP) each semester. A letter of verification for approved accommodations
can be obtained from DSP. Please be sure the letter is delivered to me as early in the semester as
possible. DSP is located in GFS 120 and is open 08:30 – 17:00, Monday through Friday. The phone
number for DSP is (213) 740-0776.

https://scampus.usc.edu/1100-behavior-violating-university-standards-andappropriate-sanctions
https://scampus.usc.edu/1100-behavior-violating-university-standards-andappropriate-sanctions
http://policy.usc.edu/scientific-misconduct
http://equity.usc.edu
http://capsnet.usc.edu/department/department-public-safety/online-forms/contactus
http://capsnet.usc.edu/department/department-public-safety/online-forms/contactus
http://www.usc.edu/studentaffairs/cwm/
http://sarc.usc.edu
http://dornsife.usc.edu/ali
http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html
http://emergency.usc.edu

	Overview
	Logistics
	Attendance and Participation

