

ISE 529 Predictive Analytics

Units: 4

Fall 2023 MW 5:00 – 6:50 p.m.

Location: SLH 100

Instructor: Cesar Acosta-Mejia

Office: GER 216 Office Hours: TBD

Contact Info: acostame@usc.edu

Teaching Assistant: TBD

Office: TBD

Office Hours: TBD Contact Info: TBD

IT Help:

Hours of Service: Contact Info:

Catalog Description

Supervised learning. Linear Regression, Cross Validation, Ridge and Lasso regression, Logistic regression, kNN, Decision Trees, Random Forest and XGBoost models, Support Vector Machines, Neural Networks.

Course Description

The course focus is on building models for prediction and classification. The standard multiple linear regression model is extended to shrinkage models (ridge and lasso regression) for improved accuracy and dimension reduction. Overfitting, bias, cross validation, and AIC are used to evaluate the performance of these models. Models for classification including logistic regression, KNN, and multinomial regression, are reviewed and their prediction performance is estimated by means of error rates and gini index. Family of analytic models such as classification and regression trees (CART), ensembles of trees (random forests, bagging, and gradient boosting), support vector machines, and neural networks (for regression and classification) are evaluated.

Learning Objectives and Outcomes

- To understand the Data Analytics levels: Descriptive, Predictive, and Prescriptive Analytics.
- To understand the difference between supervised and unsupervised learning methods.

- To learn the most common data aggregation operations (cross tabulation and pivot tables).
- To build models for prediction and classification.
- To understand key concepts for predictive analytics (overfitting, shrinkage, regularization, R², adjusted R², VIF, mean square prediction error, Crossvalidation).
- To learn how to apply cross validation to models with hyperparameters.
- To learn how to derive the loss function for shrinkage models.
- To compare the performance of different prediction and classification models.
- To build models to classify observations into two or more classes (categories).

Prerequisites: None

Recommended Preparation: An undergraduate course on Statistics, working knowledge of a programming language

Course Notes

The course material is available on Blackboard.

Technological Proficiency and Hardware/Software Required

Required software: Python programming language. Jupyter Notebook is used as the main interface for documenting the scripts and results.

Supplementary Materials (for reference)

- Heydt M., Learning Pandas, Packt, 2017, ISBN 978-1-78712-313-7 (LP)
- VanderPlas, Python Data Science Handbook, O'Reilly, 2017 (PDS)
- Muller, Introduction to Machine Learning with Python, O'Reilly, 2017 (MLP)

Description and Assessment of Assignments

Unless otherwise noted the assignments are individual. Dates are shown in the Course schedule. Submit on to Blackboard by the due date. No late homework is to be accepted.

Grading Policy

Assignment	Points	% of Grade
Homework	100 each (6 ⁺ homework assignments)	30
Midterm	100	30
Final	100	40
TOTAL		100

Grading Scale (Course final grades will be determined using the following scale)

- A 94-100
- A- 90-93.9
- B+ 87-89
- B 83-86.9
- B- 80-82.9
- C+ 77-79
- C 73-76.9
- C- 70-72.9
- D+ 67-69
- D 63-66.9
- D- 60-62.9
- F 59.9 and below

Assignment Submission Policy

Assignments should be typewritten and clean. Email submissions and late submissions are not allowed. No make-up exams are considered.

Timeline and Rules for submission

Assignments are to be returned the week after submission. Solutions will be released soon after the homework submission date.

Course Schedule: A Weekly Breakdown

	Topics/Daily Activities	Deliverables	slides	Files
Aug 21	Introduction to Analytics Descriptive, Predictive and Prescriptive Analytics. Python and Jupyter Notebook (JN) setup.	HW1 MS Excel	overview.ppt analytics.ppt	
Aug 23	Python data structures. Numpy library. Operations on numpy arrays (indexing, subarrays, shaping, ufuncs, aggregation, counting).		python.ppt	Intro.ipynb numpy.ipynb
Aug 28	Pandas library. Data structures. Merging data frames. Most Common Data Operations.	HW1 due HW2 Pandas	Pandas .ppt	
Aug 30	Pandas library. Pivot tables and cross tabulation.			Example3.ipynb
Sep 4	Data Visualization library matplotlib	HW2 due	matplot.ppt	matplot.ipynb
Sep 6	Web scraping with the pandas-datareader library. Data Visualization with pandas.	HW3 Financial Analytics	finance.ppt fanalytics.ppt	Project3.ipynb
Sep 11	Linear Regression. OLS, regression assumptions, prediction, confidence and prediction intervals, ANOVA decomposition. Performance measures.		slr.ppt mlr.ppt	slr2.ipynb finished3.ipynb
Sep 13	Linear Regression. Examples with libraries sklearn and statsmodels	HW3 due		slr2.ipynb finished3.ipynb
Sep 18	Linear Regression with categorical variables. Label encoding and one-hot encoding. Interaction terms. Examples.	HW4 MLR and categorical variables	categoricals.ppt	plots2.ipynb part2c.ipynb homes_sk.ipynb
Sep 20	Linear Regression applications. Time Series forecasting.			example1b.ipynb example2.ipynb
Sep 25	Overfitting. Cross validation strategies. Training/test sets, mean square prediction error (MSPE).		cv2.ppt	
Sep 27	Linear Regression applications. Polynomial regression. Feature selection. Scaling the data.	HW4 due		Polynomial4.ipynb feature-cv3.ipynb
Oct 2-4	MIDTERM	TBD		
Oct 9	Classification Problems. Logistic Regression. Cross Entropy Loss function. Pipelines for scaling with K-fold cross validation.		classification2.ppt logistic2.ppt	cancerlogistic.ipynb
Oct 11	Classification Problems. K-nearest neighbor (KNN). Hyperparameter search.		knn.ppt	iris2.ipynb

Oct 16	Regularization and Overfitting Ridge regression and the LASSO.		rr2.ppt	
	Hyperparameter tuning.			
Oct 18	Regularization and Overfitting. Examples.			ridge5.ipynb
Oct 23	Trees based Methods. Predictors Space strategy. Tree pruning. Feature Selection. Regression trees. Examples.	HW5 Regularization	trees2.ppt	regression3.ipynb
Oct 25	Classification Trees. Performance Measures for classification trees (gini index, cross entropy). Examples.		categ.ppt	cart3.ipynb
Oct 30	Ensemble of Regression Trees. Random Forest, Bagging, and Gradient Boosting.		ensembles2.ppt	ensemblereg.ipynb
Nov 1	Ensemble of Classification Trees. Applications and Examples.	HW5 due	ensembles2.ppt	ensembcancer2.ipynb polyboosting3.ipynb
Nov 6	Support Vector Machines. Maximal Classifier, Support Vector Classifier, Support Vector Machine	HW6 Ensemble Methods	review.ppt svm.ppt	svm.ipynb function5.ipynb optdigits.ipynb
Nov 8	Support Vector Machines for regression.		svmreg.ppt	
Nov 13	Introduction to Neural Networks (NN). Data representations for NN, tensors. Layers, Loss functions, optimizers.	HW6 due	nn3.ppt	perceptron4.ipynb multilayerp3. lpynb
Nov 15	NN Applications. Library Keras. NN for binary classification. K-fold cross validation. NN for regression.			mnist. ipynb
Nov 20	Spring Break			
Nov 27	Final Review			
	Final Exam TBD			

Statement on Academic Conduct and Support Systems

Academic Conduct:

Plagiarism – presenting someone else's ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Part B, Section 11, "Behavior Violating University Standards" policy.usc.edu/scampus-part-b. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, policy.usc.edu/scientific-misconduct.

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the Office of Equity and Diversity http://equity.usc.edu or to the Department of Public Safety http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us. This is important for the safety of the whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. The Center for Women and Men http://www.usc.edu/student-affairs/cwm/ provides 24/7 confidential support, and the sexual assault resource center webpage http://sarc.usc.edu describes reporting options and other resources.

Support Systems:

Student Health Counseling Services - (213) 740-7711 – 24/7 on call engemannshc.usc.edu/counseling

Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention.

National Suicide Prevention Lifeline - 1 (800) 273-8255 – 24/7 on call suicidepreventionlifeline.org

Free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week.

Relationship and Sexual Violence Prevention Services (RSVP) - (213) 740-4900 – 24/7 on call engemannshc.usc.edu/rsvp

Free and confidential therapy services, workshops, and training for situations related to gender-based harm.

Office of Equity and Diversity (OED) | Title IX - (213) 740-5086 equity.usc.edu, titleix.usc.edu

Information about how to get help or help a survivor of harassment or discrimination, rights of protected classes, reporting options, and additional resources for students, faculty, staff, visitors, and applicants. The university prohibits discrimination or harassment based on the following protected characteristics: race, color, national origin, ancestry, religion, sex, gender, gender identity, gender expression, sexual orientation, age, physical disability, medical condition, mental disability, marital status, pregnancy, veteran status, genetic information, and any other characteristic which may be specified in applicable laws and governmental regulations.

Bias Assessment Response and Support - (213) 740-2421 studentaffairs.usc.edu/bias-assessment-response-support

Avenue to report incidents of bias, hate crimes, and microaggressions for appropriate investigation and response.

The Office of Disability Services and Programs - (213) 740-0776

dsp.usc.edu

Support and accommodations for students with disabilities. Services include assistance in providing readers/notetakers/interpreters, special accommodations for test taking needs, assistance with architectural barriers, assistive technology, and support for individual needs.

USC Support and Advocacy - (213) 821-4710

studentaffairs.usc.edu/ssa

Assists students and families in resolving complex personal, financial, and academic issues adversely affecting their success as a student.

Diversity at USC - (213) 740-2101

diversity.usc.edu

Information on events, programs and training, the Provost's Diversity and Inclusion Council, Diversity Liaisons for each academic school, chronology, participation, and various resources for students.

USC Emergency - UPC: (213) 740-4321, HSC: (323) 442-1000 – 24/7 on call dps.usc.edu, emergency.usc.edu

Emergency assistance and avenue to report a crime. Latest updates regarding safety, including ways in which instruction will be continued if an officially declared emergency makes travel to campus infeasible.

USC Department of Public Safety - UPC: (213) 740-6000, HSC: (323) 442-120 – 24/7 on call dps.usc.edu

Non-emergency assistance or information.