AME 521 Engineering Vibrations II

Fall 2023

Department of Mechanical Engineering University of Southern California

(Created on 2023-0524; Revised on 2023-0818)

Description: 4 units Multi-degree of freedom systems; continuous systems; gyroscopic systems; modal analysis; beams, rods, strings, shafts; membranes, plates, and cylindrical shells; numerical methods including Rayleigh Ritz method, Galerkin method, assumed-mode method, and finite element methods; application problems.

Prerequisite: AME 420

Instructor	Professor Bingen (Ben) Yang Office: OHE 412F; Phone: (213) 740-7082; Email: bingen@usc.edu	
Class Meeting	Monday and Wednesday 6:00-7:50 pm, OHE 100D	
Office Hour	Monday and Wednesday 3:30 – 5:00 pm, in office and Zoom meeting	

Course Materials:

	William J. Bottega, 2014, Engineering Vibrations, CRC Press, 2 nd ed., ISBN 9781498723664 Class notes and handouts (downloadable from the AME521 website)	,
References:	 ces: [1] S. Graham Kelly, 2006, Advanced Vibration Analysis, CRC. [2] L. Meirovitch, 2002, <i>Fundamentals of Vibrations</i>, McGraw-Hill. [3] B. Yang, 2023, <i>Stress, Strain, and Structural Dynamics</i>, Academic Press. 	
Grading:	Three (3) online midterm exams (110 mins, 25% each) Project No final exam	
Homework:	Total 10 sets of non-credit homework problems will be assigned weekly. So	100 % lutions to the

Homework: 10 sets of non-credit homework problems will be assigned weekly. Solutions to the homework will be provided. Timely and independent completion of the homework problems is important to understanding of the course materials, and to good performance in the coursework.

Learning Objectives:

The objectives of this course are:

- To provide students with fundamental theories on linear vibrations for a variety of dynamic systems in a variety of engineering applications;
- To train students on how to apply those theories in modeling, analysis and numerical simulation of vibrating systems; and
- To help students develop skills of handling practical engineering problems.

Topics:

- Review of single-degree-of-freedom systems
 - Establishment of equations of motion
 - Newton's laws
 - Lagrange's equations
 - Small oscillation and linearization (two methods)
- Multi-degree-of-freedom systems
 - Spring-mass-damper systems
 - Natural modes of vibration
 - Eigenvalue problems and solutions
 - Steady-state response to harmonic excitations
 - Transient response via modal analysis
 - Damping in vibrating systems
 - General mechanical systems
 - Use of MATLAB in vibration analysis
- State equations and transfer function formulation
 - State equations and solution via eigenvector expansion and numerical integration
 - Transfer function formulation and convolution integral
- Distributed vibrating systems
 - Calculus of variations
 - Hamilton's principles and equations of motion
 - o Boundary-initial value problems of strings, rods, shafts and beams
 - Solution of eigenvalue problems
 - Natural normal modes and eigenfunction expansion (modal analysis)
 - Damping in distributed systems
 - Self-adjoint and non-self-adjoint systems
 - o Green's function formulation
 - Vibration of membranes
 - Vibration of thin plates
- Approximate methods for distributed systems
 - Rayleigh's quotient
 - Assumed-mode method
- Applications
 - o Dynamics of structures carrying moving subsystems
 - Dynamic vibration absorption
 - Flexible rotor-bearing systems

AME 521 Website

All the class notes, handouts, homework assignments and solutions, and project description are paperless. These documents are downloadable from the web <u>https://courses.uscden.net</u> You can get access to the course materials from the following folders:

"Syllabus" -- syllabus and midterm exam solutions

"Content" -- lecture notes and handouts, homework and solutions, and project description

Course Schedule

Important Dates							
	2023/09/27	Midterm Exam 1 (110 mins)	Online				
	2022/11/01	Midterm Exam 2 (110 mins)	Online				
	2022/11/29	Midterm Exam 3 (110 mins)	Online				
	2022/12/06	Project report due (Wednesday, by 11:59 pm)	Online submission				

Week	Date	Materials Covered/Exams	HW/Project
		Review of single-degree-of-freedom systems	
		(AME420 course materials)	
		Textbook: Chapters 2-4, pp. 71-250	
1	8/21	Class Notes: Chapter 1; Handouts 1a, 1b & 1c	
		Multi-degree-of-freedom (M-DOF) systems:	
		governing equations by Newtonian approach	
		Textbook: Section 6.1	
	8/23	Class notes: Chapter 2, Handout 2	
		M-DOF systems: Lagrange Equations	
		Textbook: Section 6.2	
2	8/28	Class notes: Chapter 2	HW 1
		MDOF systems: linearization, more examples	
	8/30	Class notes: Chapters 2 and 3, Handout 3	
3	9/4	Labor Day – No class	
		MDOF systems: eigenvalue problems	
		Textbook: Sections 7.1-7.2	
	9/6	Class notes: Chapter 3	HW 2
		M-DOF systems: eigenvalue problems, free	
		vibration, modal analysis	
		Textbook: Chapter 7	
4	9/11	Class notes: Chapters 3 and 4	
		M-DOF systems: modal analysis	
		Textbook: Chapter 8, Chapter 8 Reference	
	9/13	Class notes: Chapter 4	HW 3
		M-DOF systems: damped systems	
5	9/18	Class notes: Chapter 5, Handouts 4 and 5	
		M-DOF systems: general mechanical systems,	
	9/20	steady-state response	HW 4
		Calculus of variations	
6	9/25	Class notes: Chapter 6, Handout 6	

	9/27	Midterm Exam 1 online	
		Extended Hamilton's principle	HW 5
7	10/2	Class notes: Chapter 6	
		1-D distributed systems: governing equations	
		Textbook: Sections 9.1-9.6	
	10/4	Class notes: Chapter 7	Project assignment
	10/1	Eigenvalue problems of 1-D continua	
		Textbook: Sections 10.1-10.7	
8	10/9	Class notes: Chapter 7	HW 6
0	10/9	Orthogonality of eigensolutions	11 W 0
		Textbook: Chapter 11	
	10/11	Class notes: Chapter 7	
	10/11		
		Modal analysis of 1-D continua, damped 1-D	
		continua, steady-state response	
		Textbook: Chapter 11	
9	10/16	Class notes: Chapter 7	HW 7
		Distributed transfer function method (DTFM)	
		Class notes: Chapter 8	
	10/18	Handouts 7 and 8	
		DTFM: eigensolutions of 1-D continua	
10	10/23	Class notes: Chapter 8	HW 8
		Approximation methods: Rayleigh quotient,	
		Class notes: Chapter 9	
	10/25	Handouts 9 and 10	
		The assumed-mode method, project tips	
11	10/30	Class notes: Chapter 9	HW 9
	11/1	Midterm Exam 2 online	
		Finite element methods, project tips	
12	11/6	Class notes: Chapter 9	
12	11/0	Application 1: Coupled distributed-lumped	
		systems: combined beams	
	11/8	Class notes: Chapter 10a	
	11/0	Application 2: Structures carrying moving	
		subsystems	
		Class notes: Chapter 10b	
13	11/13	Handout 11	HW 10
13	11/13	Two-dimensional continua: membranes	11 10
		Textbook: Section 12.2	
	11/15	Class notes: Chapter 12a	
	11/13	Two-dimensional continua: rectangular plates	
		Textbook: Section 12.3	
14	11/20		
14	11/20	Class notes: Chapter 12b	+
	11/22	Thanksgiving Break – No class	
		Applications 3 and 4: Dynamic vibration	
		absorption, flexible rotor systems	
		Class notes: Chapter 13	
15	11/27	Handout 12	
	11/29	Midterm Exam 3 – online	Last class
16	12/6	Project report due (Wedn., by 11:59 PM)	