CHEM 550. Special Topics in Molecular Dynamics: Harmonic Oscillators MWF 2:00 – 2:50, SSC 604

Curt Wittig, SSC 403, wittig@usc.edu, office hours by appointment

Part Ia. Classical Harmonic Oscillators

	Introduction	
1.	Driven classical harmonic oscillator with loss Mathematical model Fourier approach (optional)	
2.	Degenerate harmonic oscillators coupled through a weak spring	
3.	Harmonic oscillators coupled by friction plates	
4.	Susceptibility, permittivity, index of refraction, etc The Drude plasma Interpretation Transverse and longitudinal waves Doped semiconductors Inter-band absorption Summary of Section 4	

Part Ib. Quantum Mechanical Harmonic Oscillator

5.1	Introductory comments	1
	Leaving the shallows	2
	Box 1. QM harmonic oscillator miscellanea	3
5.1.	Intuition	5
	Box 2. Gaussian ground state	10
	Synopsis for Section 5.1	10
5.2.	Phase space and the coherent state	11
	The coherent state	14
	Ordinary harmonic oscillator wave packets	15
	$ \alpha\rangle$ in the $ v\rangle$ basis $ \alpha(t)\rangle$	16
	Time evolution of the coherent state	19
	Registry with classical physics	21
5.3.	Representations and registry	24
	Box 3. Number valued representation	25
	Box 4. Useful diagrams	26
	Box 5. Sequential raising operations	27
5.4.	Vibrational states ψ_0, ψ_1, ψ_2	27
	Digging deeper	29
	In search of clarification	29

CHEM 550 Syllabus, 8/15/23 10:17 AM

5.5.	Amusing balancing act	31
5.6.	Summary of Part Ib	32
Part	II. Lattice Vibrations in One Dimension	1
1. Ir	ntroduction	4
	A nuanced model	7
	Coupled wave equations (advanced)	9
	Model Hamiltonian	12
	Born and von Kármán boundary conditions	12
2. Si	ite-to-site phase progression	13
	Diagram from the Hückel model	19
	Mathematical approach from phased antenna arrays	20
	The complex plane	21
	Physical space and k-space	21
	Choices of signs	22
	Quantum route	23
	Classical route	25
	Non-Hermitian operators Q _k and P _k	26
3. T	urning on quantum mechanics	27
	k-space representation of Hamiltonian	29
4. D	ispersion relation	31
5. S	econd quantization	33
	Harmonic oscillator: raising and lowering operators	35
6. Ir	nterpretation	37
7. T	he Ionic lattice	XX
	Amusement	XX
	Displacements	XX
	Acoustic branch	XX
	Optical branch	XX
D 4		
Part	III. Photons: Quanta of the Electromagnetic Field	2
lr	ntroductory comments	3
1. T	he equations of James Clerk Maxwell	6
	Fields and forces	10
	Charge conservation	10
	Potentials	11
	Gauge transformation	12
	Lorenz gauge	13
	Coulomb gauge	15
2. T	ransverse fields	16
	Electromagnetic energy density	17

Electromagnetic energy density	17
3. Quantization of transverse fields	18
Harmonic oscillator: raising and lowering operators	20
Commutation relations	21

Summary of the quantized electromagnetic field	
Example: Photon spin	
Spin density	2
4. Absorption and emission of photons	
Bosons, lasers, and so on	
Spontaneous emission	
Perturbation	
Electric dipole approximation	
5. Introduction to gauge field theory	
Consequences of redundancy	
Link with electromagnetism	
Visual aid	
6. Example: Aharonov-Bohm effect	
Covariant derivative	

Objective

In-depth coverage of selected topics that arise frequently in research currently underway in Physical and Theoretical Chemistry at USC

Description

The class will examine three important topics in chemical physics through: (i) instructor presentations of the topics, including extensive in-class discussion; (ii) assigned readings in the form of pdf handouts prepared by the instructor (approximately 200 pages). If additional materials prove necessary or desirable, the instructor will provide 100% of these materials. Exams will be oral, one-on-one. In consideration of the material covered, this encourages the most suitable study habits and exam preparations.

Course Materials

There is no official textbook. The instructor will provide all necessary materials: typed class notes, books, journal articles, etc.

Grading

Grades will be assigned based on quizzes (10%), three exams (60%) and a final exam (30%). No portion of the grade will be assigned based on attendance.

Academic integrity

It is expected that students will follow the USC code of ethics. For example, plagiarizing a write-up or essay is a serious violation that could result in a grade of zero for the assignment or F for the course. I will not adjudicate individual cases. All suspected integrity violations will be referred to SJACS without prejudice according to the procedure in SCampus § 14.

Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism – presenting someone else's ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in *SCampus* Section 11, *Behavior Violating University Standards* https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions. Other forms of academic dishonesty are equally unacceptable. See additional information in *SCampus* and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

The University does not tolerate discrimination, sexual assault, and harassment. You are encouraged to report any incidents to the *Office of Equity and Diversity* http://equity.usc.edu or to the *Department of Public Safety*

http://adminopsnet.usc.edu/department/department-public-safety. This is important for the safety of the whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. *The Center for Women and Men* http://www.usc.edu/student-affairs/cwm/ provides 24/7 confidential support, and the sexual assault resource center webpage http://sarc.usc.edu describes reporting options and other resources.

Support Systems

USC's schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the *American Language Institute* http://dornsife.usc.edu/ali, which sponsors courses and workshops specifically for international graduate students. *The Office of Disability Services and Programs*:

http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, *USC Emergency Information http://emergency.usc.edu* will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.