Optimization is used in virtually all business decisions!

COURSE OBJECTIVES

The course will teach students how to make effective decisions through optimization. Students will learn about optimization concepts and tools, and see how it can be applied to a broad range of applications. The class will provide students with extensive hand-on optimization practices.

KEY CONCEPTS

- Linear programming (LP)
- Shadow prices
- LP under uncertainty
- Multiperiod LP
- Nonlinear programming
- Integer programming
- Dynamic optimization over time
- Applications of optimization in aviation, supply chain, manufacturing, finance, and retail

COURSE DESCRIPTION

You will learn how to translate a complex business problem into an optimization model by identifying appropriate decision variables, writing the objective function in terms of the decision variables, and developing constraints that capture the business requirements. After solving the optimization model, you will learn how to interpret the solution and extract key business insights to provide recommendations for better decisions.

WHY TAKE THIS COURSE?

This course is designed for students who want exciting jobs that require advanced analytics! You will learn about "getting an edge" -- how to make effective decisions using data and models through optimization.

Optimization is used in virtually all business decisions. The skills and tools learned in this course will give you a unique analytics and competitive edge, and they can be applied to a broad range of careers, including finance, consulting, marketing, operations, and technology.

This course counts towards the USC Marshall Business Analytics Emphasis!
DSO 499 – Optimization with Analytics for Better Decision-Making

Syllabus for Spring 2023

4 Units – Mon/Wed – Time: 12pm - 1:50pm

Version: October 3, 2022

Contact Information
Instructor: Paat Rusmevichientong
Email: paat.dso499@gmail.com Note: To ensure a quick response, please send your questions about the course to paat.dso499@gmail.com
Office Hours: In-Person and Online: Tuesday 11am – 4pm @ BRI 400F

The Zoom link for office hours is available on Blackboard
Note: I want to accommodate as many students as possible, so I would be happy to hold additional office hours based on the students’ requests.

Class Schedule: Monday and Wednesday 12 – 1:50pm @ JFF 331

Course Description: The course will teach students how to make better business decisions through the use of optimization models. The students will learn about the enormous and impactful applications of optimization across multiple industries, including aviation, hospitality, retail, supply chain, manufacturing, and agricultural industries. This course will teach students the tools and techniques to formulate an optimization model, solve the model, and interpret the resulting solutions. The course will provide students with a unique analytics edge in an increasingly competitive global business environment.

Learning Objectives: The students will master the following learning objectives.

1. Recognize business problems and applications where optimization models are applicable.
2. Translate a complex business problem into an optimization model by identifying appropriate decision variables, writing out the objective function in terms of the decision variables, and developing constraints that capture the underlying business requirements.
3. Describe the optimization model using precise and appropriate mathematical notation.
4. Structure and implement the optimization model in an Excel spreadsheet.
5. Identify an appropriate solution method in Excel to solve the optimization model.
6. Understand and interpret the solution of the optimization model.
7. Extract business insights from the model and provide recommendations for better decisions.

Prerequisites: Students must have completed BUAD 310 (Applied Business Statistics) and BUAD 311 (Operations Management). Students need to have access to and be able to use regularly, efficiently, and effectively a word processor, e-mail, a web browser, and the Excel software. We will frequently use laptops during class, and laptops are required to complete homework and case assignments, along with the midterms and final exam. Students are expected to have access to a laptop.

Instructional Methods: The class will be taught through the following three instructional methods.

Lectures: During the lecture, I will cover key concepts and methodologies, along with simple illustrative examples. The lecture note will be posted on Blackboard.

Problem Solving: There will be around ten class sessions where we focus on solving real-world business problems using optimization models. The problems that we cover in these sessions are often based on large-scale, challenging, and real-world applications. These sessions are designed to give student hand-on experience in using optimization tools to solve complex business problems.

In-class Activities: These in-class activities will provide students with firsthand experience of the versatility of optimization models and techniques. The experiential learning will be done through games, role plays, sports, and illustrations.

Grading Policies: The course grade will be curved and be based on class participation, preparation and effort during problem solving sessions, homework and case assignments, midterms, and a cumulative final exam, according to the following weights:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Problem Solving Sessions</td>
<td>5%</td>
</tr>
<tr>
<td>Assignments</td>
<td>45%</td>
</tr>
<tr>
<td>Exams (Midterm and Final)</td>
<td>40%</td>
</tr>
</tbody>
</table>

Class Participation: It is very important for each student to actively participate in the class discussion. Read the assigned material before the class and make sure you are familiar with the main issues to be discussed in class. You will be cold-called. Your participation is evaluated mainly on the quality of your contribution and insights. I will make every effort to call on as many students who wish to speak up as possible.

Problem Solving Sessions: There are a number of problem-solving sessions during the semester. These sessions are important in consolidating your understanding of optimization models, sharpening your ability to apply optimization techniques to business applications, and improving your overall problem solving skill. Each student is expected to attend all problem solving sessions; attendance will be taken and each student will be tested at the end of each session. Each student will be given a handout with a detailed description of the business problem in advance (will also be available on Blackboard), and before coming to the class, s/he is expected to have read the problem description and attempted to formulate an optimization problem. Each student is expected to fully participate in these activities.

Assignments: During the course, you will be given 6 assignments. The assignment with the lowest score will be dropped. Students must complete the assigned readings, homework assignments, and case studies prior to coming to class. Assignments are due on the indicated due date before the start of the class and no late work will be accepted. You can work on the cases and assignments individually or in a team. Each team will consist of at most 2 students. Three of the assignments (Assignments #2, #3, and #4) will involve case questions. On these assignments, I will ask students to present their results to the class.
Exams: We have two exams in the course: a midterm and a final exam. We will give more weight to the exam with the higher score. The overall score for the exam will be computed based on the following formula:

\[(60\% \times \text{maximum score between the two exams}) + (40\% \times \text{minimum score between the two exams})\]

Makeup Exams: Makeup exams are allowed for “documented medical emergencies”. The students need to provide proper documentations by the time of the exam, including (a) a signed doctor’s note, with the name and phone number of the medical professional verifying the medical emergency and (b) an email from the student’s Marshall advisor.

Course Disclaimer: This syllabus is an invitation to students to engage in an exciting and interactive study of optimization. The intention of the instructor is to provide you with information, offer practice with skill sets, and enhance your capacity to use fundamental concepts to build your repertoire of optimization tools and make sound decisions. The learning environment will be collaborative and supportive; we will learn from one another both in and out of the classroom. To that end, modifications to this syllabus may be warranted as determined by the instructor as we assess the learning needs of this particular class of students. In addition, grades for class participation and problem solving sessions are under the sole discretion of the instructor.

Statement on Academic Conduct and Support Systems

Academic Conduct: Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards” policy.usc.edu/scampus-part-b. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, policy.usc.edu/scientific-misconduct.

Support Systems:

Counseling and Mental Health - (213) 740-9355 – 24/7 on call studenthealth.usc.edu/counseling
Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention.

National Suicide Prevention Lifeline - 1 (800) 273-8255 – 24/7 on call suicidepreventionlifeline.org
Free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week.

Relationship and Sexual Violence Prevention Services (RSVP) - (213) 740-9355(WELL), press “0” after hours – 24/7 on call studenthealth.usc.edu/sexual-assault
Free and confidential therapy services, workshops, and training for situations related to gender-based harm.

Office of Equity and Diversity (OED) - (213) 740-5086 | Title IX – (213) 821-8298 equity.usc.edu, titleix.usc.edu
Information about how to get help or help someone affected by harassment or discrimination, rights of protected classes, reporting options, and additional resources for students, faculty, staff, visitors, and applicants.

Reporting Incidents of Bias or Harassment - (213) 740-5086 or (213) 821-8298 use-advocate.simplicity.com/care_report
Avenue to report incidents of bias, hate crimes, and microaggressions to the Office of Equity and Diversity |Title IX for appropriate investigation, supportive measures, and response.

The Office of Disability Services and Programs - (213) 740-0776 dsp.usc.edu
Support and accommodations for students with disabilities. Services include assistance in providing readers/notetakers/interpreters, special accommodations for test taking needs, assistance with architectural barriers, assistive technology, and support for individual needs.
COURSE OUTLINE

The pictures next to each session describe the instructional methods used in the session, where 📚 denotes lectures, ⭐ denotes problem solving sessions, and 🎨 denotes in-class activities. The relevant learning objectives (#1 - #7) are listed on the first page of the syllabus.

Session 1 – 1/9/23 (Monday) 📚🎨: Course overview

Question: What is optimization? Why do we need it?

Learning outcomes: You will discover a broad range of business applications where optimization models are applicable. We will also introduce a framework for effective decision-making and the Chocolate Game.

• Define and recognize opportunities for optimization in business situations
• Understand how we can use data to develop good models that drive effective decision-making
• Recognize and formulate decision problems

Relevant learning objectives: #1

Required reading: Chapters 1.1 - 1.3 in the textbook

Session 2 – 1/11/23 (Wednesday) 📚⭐: Introduction to linear programming and the NBT problem

Question: What is a linear program?

Learning outcomes: You will be able to formulate a linear program (LP) and solve small LP problems using Excel Solver.

• Understand the components of a linear program
• Formulate linear programs and solve it using Excel solver

Relevant learning objectives: #1, #2

Required reading: Chapters 7.1 – 7.4 in the textbook

Session 3 – 1/16/23 (Monday): NO CLASS --- Martin Luther King’s Birthday
Session 4 – 1/18/23 (Wednesday): The Chocolate Game and introduction to refinery optimization

Question: How can firms make effective decisions over time? How can linear program be used in oil refinery optimization?

Learning outcomes: Through the Chocolate Game simulation, you will experience firsthand the challenge of making effective decisions over time. Introduce the concept of a policy. We will introduce how linear program can be used to optimize the refinery operations.

- Understand the challenge of making decisions over time
- Recognize how linear programs can be use to help oil refineries optimize their operations

Relevant learning objectives: #1, #2, #3,

Required reading: Handout on the LP Refinery problem on Blackboard

Session 5 – 1/23/23 (Wednesday): Application of LP to refinery optimization

Question: An oil refinery firm needs to decide how much of crude oil to distill, reform, crack, and blend to create different types of fuels. Given the complexity of the refinery process, how can we use the LP formulation to determine the optimal operations for the refinery?

Learning outcomes: You will acquire a hand-on experience in formulating a complex LP to maximize profitability, using actual data from a business operations.

- Formulate complex LP to optimize business operations
- Structure complex LP in Excel
- Interpret the Excel outputs for business insights
- Application of LP to refinery optimization

Relevant learning objectives: #1, #2, #3,

Required reading: Handout on the LP Refinery problem on Blackboard

1/25/23: Assignment #1 is due. **

Session 6 – 1/25/23 (Wednesday): Introduction to sensitivity analysis

Question: Can we use the LP techniques to solve real business problems? What are the typical business problems where LP techniques can be applied? How does the objective value of a linear program change with the problem parameters?

Learning outcomes: You will practice more advanced LP formulation and learn how to use the sensitivity report, which shows how the solutions change if the conditions vary.

- Understand the impact of changes in the problem’s parameters

Relevant learning objectives: #6, #7

Required reading: Chapters 7.5 – 7.6 in the textbook

Session 7 – 1/30/23 (Monday): Geometry of LP, shadow prices, and sensitivity analysis

Question: What is the geometry of LP? What are shadow prices? How can we interpret the sensitivity report from Excel Solver?

Learning outcomes: You will learn the geometry of linear program, understand the concept of shadow prices, and learn how to interpret the sensitivity report generated by Excel Solver

Relevant learning objectives: #6, #7

Required reading: Chapters 7.5 – 7.6 in the textbook

Session 8 – 2/1/23 (Wednesday) 🌊✨: Multi-period LP formulation: Using OpenSolver to deal with many decision variables

Question: How can we use LP to develop an optimal production schedule that involves thousands of variables? How to extend the capability of Excel Solver through OpenSolver add-in package?

Learning outcomes: You will learn about the multi-period LP formulation and how to handle LPs with large number of variables. The lecture will also introduce OpenSolver, which is a powerful open-source optimizer that extends the capability of the Excel Solver.

- Formulate the multi-period LP for production scheduling
- Structure the multi-period LP in Excel
- Use OpenSolver to address large-scale optimization problems with many variables

Relevant learning objectives: #2, #3, #4

Required reading: Handout on the Factory Planning problem on Blackboard

Session 9 – 2/6/23 (Monday) 🌊✍️: LP under uncertainty

Question: How to formulate LP when there is an underlying uncertainty? How to extend a LP to allow for multi-period decision-making?

Learning outcomes: You will learn how to formulate a two-stage LP, and apply the formulation to multi-stage decision-making problems. You will learn how the concept of probability distributions from Session #5 can be incorporated into a linear optimization problem.

- Recognize linear optimization problems where there is an underlying uncertainty
- Understand how to formulate multi-period decision-making as a two-stage LP

Relevant learning objectives: #1, #2, #3

Required reading: Chapter 7.7 in the textbook

2/8/23: Assignment #2 (Westvaco) is due before the class starts. Please upload your work through Blackboard before the class starts. Case description and case questions are available on blackboard. Please answer all the case questions. **

Session 10 – 2/8/23 (Wednesday): Westvaco Case presentation by students

Question: How can Westvaco use linear program to minimize the total cost of assigning truckloads to carriers while meeting all the strategic constraints?

Learning outcomes: You will learn how to formulate linear program to help companies optimize their logistic operations. You will learn about outputs of LP and sensitivity report can be used to help in setting prices, determining capacity expansion, and evaluating strategic acquisition opportunities.

- Formulate an LP for a logistic problem
- Use sensitivity report to analyze business opportunities

Session 11 – 2/13/23 (Monday) 🌊✨: Introduction to nonlinear programming (NLP)

Question: What is a nonlinear programming problem? What are potential applications?

Learning outcomes: You will learn about NLP and its applications to portfolio optimization.

- Recognize nonlinear optimization problems
- Formulate the portfolio problem as a nonlinear optimization problem
- Learn how to use Excel Solver to solve general nonlinear optimization problems

Relevant learning objectives: #1, #4, #5

Required reading: Chapters 8.1 – 8.3 in the textbook
Session 12 – 2/15/23 (Wednesday): Additional applications and Geometry of NLP

Question: What are additional applications of NLP? What is a Lagrange multiplier in NLP? How do we interpret the sensitivity report under NLP? What is the geometry of NLP? How do we visualize NLP?

Learning outcomes: You will learn about the geometry and additional applications of NLP. We will discuss graphical analysis of nonlinear optimization problem and review solution methods based on Solver.

- Analyze simple nonlinear optimization problems using graphical methods
- Understand the outputs of the Solver and provide appropriate interpretation

Relevant learning objectives: #6, #7

Required reading: Chapter 8.5 in the textbook

Session 13 – 2/20/23 (Monday): NO CLASS --- President’s Day

2/22/23: Assignment #3 (Endurance Investor Case) is due before the class starts. Please upload your work through Blackboard before the class starts. Case description and questions are on pages 436 – 442 in the textbook and they are also available on Blackboard. Please answers all questions. **

Session 14 – 2/22/23 (Wednesday): Endurance Investor case presentation by students

Question: How can we use nonlinear optimization problem to determine the optimal portfolio allocation?

Learning outcomes: You will learn how NLP can be used to formulate the portfolio allocation optimization problem? You will learn how to incorporate transaction costs as constraints in the NLP.

- Formulate NLP for portfolio optimization
- Understand how variance of a portfolio is computed
- Translate transaction costs into constraints in the NLP

NOTE: I will have extra office hours on Monday (2/28), Tuesday (3/1) and Wednesday (3/2) to help with the midterm preparation.

Session 15 – 2/27/23 (Monday): Review for Midterm

Session 16 – 3/1/23 (Wednesday): Midterm

Session 17 – 3/6/23 (Monday): Introduction to discrete optimization

Question: Can we apply optimization tools when the decision variables are not divisible?

Learning outcomes: Optimization is more than linear and nonlinear programming. The firms cannot hire half of a person or fly a quarter of an airplane. You will be able to formulate an integer program (IP) and solve small IP problems using Excel Solver.

- Understand the components of an integer program
- Formulate an integer program and solve it using Excel solver
- Understand how to use binary decision variables to model constraints in integer programming

Relevant learning objectives: #1, #2, #3

Required reading: Chapters 9.1 – 9.2 in the textbook

Session 18 – 3/8/23 (Wednesday): Strategic relocation problem

Question: How to identify problems that can be solved using IP? How to use IP to solve the strategic relocation problem?

Learning outcomes: You will learn about additional applications of IP, including locating shelters, matching, and scheduling.

- Identify problems that can be formulated as an IP
• Convert business problems into an IP using appropriate variables
• Create a model for the strategic relocation problem using IP

Relevant learning objectives: #1, #2, #3

Required reading: Chapters 9.3 in the textbook

Spring Break: 3/12/23 – 3/19/23

Session 19 – 3/20/23 (Monday): Applications of discrete optimization in logistics

Question: How can we use IP in logistics problems?

Learning outcomes: You will have an opportunity to formulate a large-scaled IP for a logistic problem based on an actual business operation of a firm.

• Learn about the traveling salesman problem (TSP)
• Understand how to formulate the TSP and its variants

Relevant learning objectives: #1, #2, #3, #4, #5, #6, #7

Required reading: Handout on the Logistics problem on Blackboard

Session 20 – 3/22/23 (Wednesday): Wrap-up discrete optimization in logistics

Question: How can we use subtour elimination in the traveling salesman problem?

Learning outcomes: You understand how to add valid inequalities to rule out infeasible solutions and implement the large-scaled IP for a logistic problem using Excel

Relevant learning objectives: #1, #2, #3, #4, #5, #6, #7

Required reading: Handout on the Logistics problem on Blackboard

Session 21 – 3/27/23 (Monday): Discrete optimization in corporate restructuring

Question: How can we use discrete optimization to help with corporate restructuring?

Learning outcomes: The International Industries, Inc. Case is a nice application of discrete optimization in strategic planning. It demonstrates the value of discrete optimization in finding a good investment strategy. You will have an opportunity to apply integer programming to an actual business problem.

• Learn how to formulate strategic decisions in terms of discrete optimization problems
• Set up the spreadsheet for complex integer programs.

Relevant learning objectives: #1, #2, #3, #4, #5, #6, #7

Required reading: The International Industries, Inc. Case on pages 471 – 473 in the textbook

3/29/23: Assignment #4 (AirMart Case) is due before the class starts. Please upload your work through Blackboard before the class starts. Case description and questions are available on Blackboard. Please answer all the case questions. **

Session 22 – 3/29/23 (Wednesday): AirMart case presentation by students

Question: How can AirMart Inc. use IP to optimize their supply chain network and fulfillment operations?

Learning outcomes: You will formulate an IP to help companies optimize their supply chain network, determine the optimal fulfillment strategy.

• Formulate an LP for an inventory and transportation problem
• Translate the fixed cost requirement into a constraint in the IP
Session 23 – 4/3/23 (Monday): Solving Sudoku using discrete optimization

Question: How can we use discrete optimization to solve the game of Sudoku and its variants?

Learning outcomes: You will learn how to formulate a discrete optimization model to solve the classical game of Sudoku and its variants. This is a great opportunity to learn how to translate constraints into the mathematical language of optimization.

Relevant learning objectives: #2, #3, #4

Required reading: The Sudoku problem handout.

Session 24 – 4/5/23 (Monday): Branch-and-bound method

Question: What is a branch-and-bound method? How can we use it to solve discrete optimization problems?

Learning outcomes: Branch-and-bound method is one of the most commonly used techniques for solving discrete optimization problems. You will learn the underlying principle of the method.

- Understand the branch-and-bound method and its connection to linear programs
- Understand how the branch-and-bound method allows us to determine the optimality gap
- Be aware of the pitfalls and issues associated with the method

Relevant learning objectives: #5, #6

Required reading: Chapter 9.4 in the textbook

Session 25 – 4/10/23 (Monday): Introduction to dynamic optimization

Question: What is a dynamic optimization? What are the important features of such problems?

Learning outcomes: Many business problems require a multi-period optimization framework. How to recognize such problems? What are the important features of these problems?

- Recognize a dynamic optimization problem
- Understand the principle for solving such problems.
- Understand the concept of value function and the dynamic programming formulation

Relevant learning objectives: #1, #2, #3

4/12/23: Assignment #5 is due.

Session 26 – 4/12/23 (Wednesday): Solving the Chocolate Game problem

Question: How can we implement dynamic programming and solve the dynamic optimization problem in Excel?

Learning outcomes: You will learn about the value function and how it can be used to solve the dynamic programming equation. You will also implement dynamic programming on Excel

- Understand the concept of value function
- Solve for the value function in Excel for the Chocolate Game from Session #1.

Relevant learning objectives: #4, #5, #6

Required reading: Note on the Chocolate Game problem on Blackboard

Session 27 – 4/17/23 (Monday): Additional applications of dynamic programming

Question: What are additional applications of dynamic programming?

Learning outcomes: You will learn about the variety of applications that can be formulated as a multi-period optimization problem and the associated dynamic programming equation.

- Recognize the variety of problems that can be formulated using dynamic programming
- Be able to write the dynamic programming equations for these problems

Relevant learning objectives: #1, #2, #3

Session 28 – 4/19/23 (Wednesday): Applications of dynamic optimization to retail pricing

Question: How should a retailer set the price of its products over time in face of random demands, in order to maximize the total profit over an entire selling season?

Learning outcomes: In this session, we will discuss an application of dynamic optimization to retail pricing. We will show how to formulate the business problem as a dynamic program.

- Apply dynamic programming framework to a problem in retail industry
- Recognize other applications of dynamic optimization

Relevant learning objectives: #1, #2, #7

Session 29 – 4/24/23 (Monday): Applications of management science tools to Money Tree Mortgage.

Question: Putting everything together. We will demonstrate how can we use all of the tools in the course to analyze a business case related to mortgage investments.

Learning outcomes: We will discuss applications of management science models and tools to a business case involving mortgage lending.

- Learn how an actual business problem requires all of the tools and models covered in this class.
- Recognize how to use optimization models in actual business problems.

Relevant learning objectives: #1, #2, #7

** 4/26/23: Assignment #6 is due. **

Session 30 – 4/26/23 (Wednesday): Review for the Final Exam

Following the university schedule, the final exam is on

Friday, May 5, 11am – 1pm

No early finals are allowed by University policy.

A summary of the class schedule and due dates are given on the next two pages.
Summary of the Schedule of Classes

<table>
<thead>
<tr>
<th>Week</th>
<th>Session</th>
<th>Date</th>
<th>Topics and Instructional Methods</th>
<th>Activities to Complete before Coming to Class and Assignments Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01 M 01/09</td>
<td>Intro to linear programming (LP): The NBT Problem</td>
<td>Please complete the course survey and submit your bid for the chocolate game by Wednesday (1/12) at 8pm.</td>
<td></td>
</tr>
<tr>
<td>02 W 01/11</td>
<td>Course overview and introduction to the Chocolate Game</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 M 01/16</td>
<td>NO CLASS --- Martin Luther King’s Birthday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>04 W 01/18</td>
<td>Play the Chocolate Game. Intro to refinery optimization</td>
<td>Study the refinery problem before coming to class</td>
<td></td>
</tr>
<tr>
<td>05 M 01/23</td>
<td>Refinery optimization wrap-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>06 W 01/25</td>
<td>Xtreme Sands Inc. Introduction to sensitivity analysis.</td>
<td>Assignment #1 is due</td>
<td></td>
</tr>
<tr>
<td>07 M 01/30</td>
<td>Geometry of LP, shadow prices, and sensitivity analysis.</td>
<td>Study the factory planning problem before coming to class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 W 02/01</td>
<td>Multi-period LP: Using OpenSolver to deal with a large number of decision variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 M 02/06</td>
<td>LP under uncertainty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 W 02/08</td>
<td>Case Presentation by students (Westvaco)</td>
<td>Assignment #2 (Westvaco Case) is due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11 M 02/13</td>
<td>Introduction to nonlinear programming (NLP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 W 02/15</td>
<td>Additional applications and geometry of NLP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 M 02/20</td>
<td>NO CLASS --- President’s Day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 W 02/22</td>
<td>Case Presentation by students (Endurance Investor)</td>
<td>Assignment #3 (Endurance Investor Case) is due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15 M 02/27</td>
<td>Review for Midterm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 W 03/01</td>
<td>Midterm Exam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 M 03/06</td>
<td>Introduction to discrete optimization (DO)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 W 03/08</td>
<td>Strategic relocation problem</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>M 03/20</td>
<td>DO in logistics</td>
<td>Study the logistic problem before class</td>
</tr>
<tr>
<td>20</td>
<td>W 03/22</td>
<td>Wrap-up DO in logistics</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>M 03/27</td>
<td>DO in corporate restructuring</td>
<td>Study the International Industries problem before coming to class</td>
</tr>
<tr>
<td>22</td>
<td>W 03/29</td>
<td>Case Presentation by students (AirMart)</td>
<td>Assignment #4 (AirMart Case) is due</td>
</tr>
<tr>
<td>23</td>
<td>M 04/03</td>
<td>Solving Sudoku using DO</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>W 04/05</td>
<td>Branch-and-bound method</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>M 04/10</td>
<td>Introduction to dynamic optimization</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>W 04/12</td>
<td>Solving the Chocolate Game Problem</td>
<td>Assignment #5 is due</td>
</tr>
<tr>
<td>27</td>
<td>M 04/17</td>
<td>Additional applications of dynamic optimization</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>W 04/19</td>
<td>Applications of dynamic optimization to retail pricing</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>M 04/24</td>
<td>Money tree mortgage</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>W 04/26</td>
<td>Review for final exam</td>
<td>Assignment #6 is due</td>
</tr>
</tbody>
</table>

Final Exam: Friday, May 5, 11am – 1pm