University of Southern California

Ming Hsieh Department of Electrical Engineering

Course Number & Title:	EE 536a, Mixed Signal Integrated Circuit Design
Units:	4
Semester:	Fall 2022
Schedule:	Mondays & Wednesdays 10:00 am – 11:50 am Fridays: 12:00 – 12:50 pm
Location:	OHE 120
Instructor:	Hossein Hashemi
Office:	PHE 616
Office Hours:	Mondays & Wednesdays 8:45 am – 9:45 am
Contact Information:	<u>hosseinh@usc.edu</u> , 213-740-3596
Teaching Assistant:	TBD Office Hours: TBD

Catalogue Description:

MOSFET operation and models; elementary amplifier configurations; biasing and references; frequency response; noise; feedback; operational amplifiers; frequency compensation; nonlinearity and mismatch; passive and active filters

Course Description:

EE 536a covers theory, analysis, and design of analog integrated circuits at the transistor level. The course includes a few design projects as homework assignments and a comprehensive final design project using state-of-the-art semiconductor technologies and computer aided design environments. The principles covered in this course enables designing low noise, high frequency, low power, analog integrated circuits such as operational amplifier and active filters.

Learning Objectives:

EE 536a is designed as the first graduate course covering theory, analysis, and design of analog integrated circuits. At the completion of the subject students will be able to analyze and design

analog integrated circuits for wide range of applications such as wireless and wired communications, biomedical implants, controls, computation, sensing, imaging, etc. The course serves as the pre-requisite for EE 536b covering basics and advanced mixed-signal integrated circuits.

Main Text Book:B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2nd
Edition, 2019.

Supplementary Texts:

- P. Grey, P. Hurst, S. Lewis, and R. Meyer, *Analysis and Design of Integrated Circuits*, John Wiley and Sons, 5th Edition, 2009.
- A. Sedra and K. Smith, *Microelectronic Circuits*, Oxford University Press, 6th Edition, 2009.
- D. Johns and K. Martin, *Analog Integrated Circuit Design*, John Wiley and Sons, 1st Edition, 1997.
- **Readings:** All lectures will be available on Blackboard.

Grading:

Homework (11)	10%
Midterm Exam	30%
Final Exam	40%
Design Project	20%

Tentative	Weekly	Schedule
-----------	--------	----------

Week	Date	Subject	Readings	HW
	Mon 08/22/2022	Review of basic MOSFET physics and models	Chamberry 1, 2	HW 1 Assign
1	Wed 08/24/2022	Review of basic MOSFET physics and models	Chapters 1, 2,	
Fri 08/26/2022		Review of single-stage amplifiers	- 16, 17	
	Mon 08/29/2022	Review of single-stage amplifiers		HW 2 Assign
2	Wed 09/31/2022	Review of single-stage amplifiers	Chapter 3	HW 1 Due
	Fri 09/02/2022	Single- and multi-stage amplifier examples		
	Mon 09/05/2022	Labor Day Holiday		HW 3 Assign
3	Wed 09/07/2022	Single- and multi-stage amplifier examples	Chapter 4	HW 2 Due
	Fri 09/09/2022	Differential amplifiers		
	Mon 09/12/2022	Differential amplifiers		HW 4 Assign
4	Wed 09/14/2022	Differential amplifiers	Chapter 5	HW 3 Due
	Fri 09/16/2022	Differential amplifiers	1	
	Mon 09/19/2022	Differential amplifiers		HW 5 Assign
5	Wed 09/21/2022	Current mirrors, current amplification	Chapters 5, 6	HW 4 Due
	Fri 09/23/2022	Current mirrors, current amplification	1	
	Mon 09/26/2022	Current mirrors, current amplification		HW 6 Assign
6	Wed 10/28/2022	Current mirrors, current amplification	Chapter 6	HW 5 Due
	Fri 10/30/2022	Review of time- and frequency-domain analysis	1 .	
	Mon 10/03/2022	Review of frequency response and Bode plots		HW 7 Assign
7	Wed 10/05/2022	Frequency response	Chapter 6	HW 6 Due
	Fri 10/07/2022	Frequency response	1 .	
	Mon 10/10/2022	Frequency response	· ·	
8	Wed 10/12/2022	Frequency response	Chapter 7	HW 7 Due
	Fri 10/14/2022	Fall Recess	1	
	Mon 10/17/2022	Frequency Response		HW 8 Assign
9	Wed 10/19/2022	Frequency response	Chapter 8,	HW 7 Due
	Fri 10/21/2022	Noise Lecture Notes		
	Mon 10/24/2022	Midterm Exam		
10	Wed 10/26/2022	Noise	Chapter 8,	HW 7 Due
	Fri 10/28/2022	Noise	Lecture Notes	
	Mon 10/31/2022	Feedback		HW 9 Assign
11	Wed 11/02/2022	Feedback: stability and Routh-Hurwitz	Chapter 10	HW 8 Due
	Fri 11/04/2022	Feedback: circuit models	1	
	Mon 11/07/2022	Feedback: circuit models		HW 10 Assign
12	Wed 11/09/2022	Feedback: circuit models	Chapter 9	HW 9 Due
	Fri 11/11/2022	Feedback: circuit models	1	
	Mon 11/14/2022	Feedback: phase margin & 1-stage amp. compensation		HW 11 Assign
13	Wed 11/16/2022	Feedback: two-stage amplifier compensation	Chapters 10	HW 10 Due
	Fri 11/18/2022	Common-mode feedback	1	
14	Mon 11/21/2022	Common-mode feedback		HW 11 Due
	Wed 11/23/2022	Thanksgiving Holiday]	
	Fri 11/25/2022	Thanksgiving Holiday]	
	Mon 11/28/2022	Final Project Presentations		
15	Wed 11/30/2022	Final Project Presentations	1	
	Fri 12/02/2022		1	

Mon 12/12/2022	Final Exam (8 am – 10 am)		

Homework

Unless otherwise stated, homework assignments are due on Wednesdays at the beginning of the class. Solutions will be posted on the class website on the same day.

Late homework will not be accepted. No exceptions except institution-established emergency reasons; credit for such late homework is with the discretion of the professor.

Limited collaboration in solving homework problems is allowed. This includes reviewing and discussing the problems with current EE 536a students and TA <u>prior to</u> writing down your solution. Everybody has to write his/her own solution independently and make sure to fully understand it. Exchanging solutions, consulting with people other than class members, finding solutions on the web or elsewhere, etc. are not allowed. Violations result in losing the credit for the entire homework set in addition to a significant percentage of the <u>overall</u> course grade, all with the discretion of the professor.

All answers should be clearly and fully justified. If we can't figure out your steps from is turned in, points will be deducted, even if your final answer is correct.

One or more of the homework assignments include design problems as well as the typical analysis problems. Simulation and performance verification of the design problems will be in the Cadence environment.

Final Design Project

The final project will consist of a transistor-level design, analysis, and simulation of a complete integrated circuit such as a high-performance Operational Trans-conductance Amplifier (OTA) in the Cadence environment using a state-of-the-art semiconductor foundry process design kit. Design project must be completed individually. Final project grading will be based on design creativity, achieved specifications, completeness of the written report including comparison between analysis and simulation results, and the quality of the oral presentation including answering to the questions posed by the instructor and other classmates. The approximate timeline for the project is as follows:

Late October:	Announcement of the final project description
Last Monday of the class:	Due date for electronic submission of the project schematic
Last Week of the class:	Oral presentations, and due date for submission of the report

Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism – presenting someone else's ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in *SCampus* in Section 11, *Behavior Violating University Standards*

<u>https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-</u>sanctions/.

Other forms of academic dishonesty are equally unacceptable. See additional information in *SCampus* and university policies on scientific misconduct: http://policy.usc.edu/scientific-misconduct/.

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the *Office of Equity and Diversity* <u>http://equity.usc.edu/</u> or to the *Department of Public Safety* <u>http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us</u>. This is important for the safety whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. *The Center for Women and Men* <u>http://www.usc.edu/student-affairs/cwm/</u> provides 24/7 confidential support, and the sexual assault resource center webpage <u>sarc@usc.edu</u> describes reporting options and other resources.

Support Systems

A number of USC's schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the *American Language Institute* <u>http://dornsife.usc.edu/ali</u>, which sponsors courses and workshops specifically for international graduate students. *The Office of Disability Services and Programs*

http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html

provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC *Emergency Information* <u>http://emergency.usc.edu/</u>will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.