ASTE 556: Spacecraft Structural Dynamics
Dr. Oscar S. Alvarez-Salazar
oalvarezsala@earthlink.net

Syllabus

References: class materials on web page

Exams: One midterm on week 8 (30%), Final on Week of Finals (30%)

Homework: Assigned every week/collection at end of semester (20% grade)

Term Project: Final report due on week 15 (20%)

0 – Introduction: Structural Dynamics, Spacecraft Design, & Analytical Tools (week 1)
 - Role of the structural dynamicist in the spacecraft design cycle
 - Spacecraft design and requirements
 - Class overview
 - Discussion

I – Vibration of Single and Multiple Degree of Freedom Systems (weeks 2, 3, 4)
 - Introduction
 - Review of basic concepts in mechanical vibrations
 - Concept of stiffness, inertia, damping
 - Concept of “degree of freedom”
 - Introduction to Finite Element Modeling (FEM)
 - Examples
 - Synthesis of equations of motion
 - Solution of the equations of motion – time and frequency methods
 - Some mathematical tools – linear algebra
 - Applications – oscillators/magnetic damping/voice coils

II – Infinite Degree of Freedom Systems (week 5)
 - Introduction
 - Continuous structural systems vs. single degree of freedom or multi degree of freedom systems: advantages and disadvantages
 - Flexible vs. rigid body systems
 - Canonical examples
 - Synthesis of the equations of motion of continuous systems
 - Solution of the equations of motions
 - Natural frequencies of vibration
 - Concept of the mode shape – a relative issue
 - Dynamic response to excitations
 - Some mathematical tools
 - Applications – Active/Smart structures
Week 8: Midterm

III – Structural Dynamic Modeling of Spacecraft (weeks 6, 7, 8, 9, 10 & 11)
- Introduction
- Dynamics models
 - Structural dynamics Finite Element Model (FEM),
 - Acoustics dynamics model,
 - Shock dynamics model,
 - Deployment dynamics model,
 - Modal model for frequency analysis of spacecraft dynamics
- Analysis of spacecraft dynamics
 - Dynamic displacements
 - Dynamic loads,
 - Frequency analysis
 - Time domain analysis
 - Spacecraft response to on-orbit loads
 - Pointing
 - Modal analysis
- Introduction to FEM & rigid body dynamics tools (NASTRAN, PATRAN, Pro-Mechanica)
- Structural Dynamics Tailoring
- Examples

IV – Computation of Spacecraft Dynamic Loads (weeks 12 & 13)
- Ground loads,
- Launch loads, and coupled loads analysis
- On orbit loads
- Generation of dynamics requirements for structural design
- Iteration and convergence of loads analysis
- Examples

V – Dynamics Testing of Spacecraft (week 14)
- Week 15: project report due
- Introduction
- Model validation testing
- Modal surveys
- Deployment/repeatability tests
- Pointing accuracy tests
- Examples

Week 15: Final Project Report