
1.16.2020

EE 538: Computing Principles for Electrical
Engineers
Units: 2
Term—Day—Time:
Lecture: 2 hours/week
Discussion: 1.5 hours/week

Location: TBD

Instructor: Arash Saifhashemi
Office: EEB 504B
Office Hours: TBD
Contact Info: saifhash@usc.edu

Teaching Assistant:
Office: TBD
Office Hours: TBD
Contact Info:

For Summer 2022:
If you are taking an internship or are not in Los Angeles and want
to take the course online, sign up in the DEN Section.

All students (even non-DEN on-campus students) should be able to
sign up in the DEN Section for the Summer. Use
https://courses.uscden.net/d2l/login or contact DEN at
dentsc@usc.edu or 213-740-9356 for help.

https://viterbi.usc.edu/directory/faculty/Saifhashemi/Arash
https://courses.uscden.net/d2l/login

Page 2

Course Description
This course provides a survey of topics required for advanced computer programming. It is targeted to
graduate electrical engineering students with some prepatory (but perhaps informal) background
programming experience. It teaches knowledge and develops practices required to understand and
implement software problem solving. The course consists of two main parts: (1) foundations of software
engineering, and (2) algorithms and data structures. The course includes the necessary theoretical basis to
analyze algorithms, data structures, and mathematical methods. The course presents abstractions of
methods and algorithms applicable in most robust computer languages. It emphasizes learning through
implementing and all assignments and projects include major programming components that develop correct
execution over suggestive pseudo-code. Assignments will extend your understanding by requiring concrete
implementations with the C++ programming language. These components place emphasis on modern
software engineering methodologies such as source control and testing using the C++ programming language.

Learning Objectives
A student that successfully completes this course will:

• Understand code to execution including tokenization, compiling, and linking.

• Apply step-wise debugging to identify causes of software defects.

• Utilize modern programming practices such as STL objects and object oriented (OO) programming
including inheritance, overloading, templates, and polymorphism.

• Possess knowledge to identify and explain standard algorithms (sort, search, recursion) and data
structures (tree, hash, lists).

• Develop skills to analyze novel code for its performance in both time and space complexity.

• Be comfortable deciding between multiple solutions given optimization or cost criteria.
• Apply test-driven software design and understand its role in minimizing errors and regression.

• Understand the connection between running software and underlying hardware including basics of
threading, interrupts, memory management, caching, and device access.

Prerequisite(s): None

Co-Requisite(s): None

Concurrent Enrollment: None

Recommended Preparation: Standard undergraduate ECE education, including: (1) software proficiency

in an object-orient language at the junior level or above (e.g., EE455x or EE541), and (2), mathematical
proficiency and familiarity with proof structures – EE 141L, EE 364, MATH 225, or equivalent.

Technological Proficiency and Hardware/Software Required
You need access to a full stack for C++ development. You may consider installing a linux virtual machine to
ensure maximum interoperability and access to any tools. The instructor and teaching assistants will give
guidance during the first weeks of class.

Course Notes
Discussion section is not optional. The homework assignments are discussed primarily during the discussion
section. Teaching assistants will cover and demonstrate tools during the discussion. Discussion sessions
couple with the lecture and may also cover important additional material.

Required Readings and Supplementary Materials
1. Introductions to Algorithms, 3rd edition (required)

Thomas Cormen, Charles, et. al. (available at the campus store)
2. The C++ Programming Language, 4th Edition (recommended)

Bjarne Stroustrup (available at the campus store)
3. Code Complete: A Practical Handbook of Software Construction, 2nd Edition (recommended)

Steve McConnell (available at the campus store)

Page 3

Note: The texts are secondary to in-class lecture material and homework sets.

Description of Exams
All exams are cumulative and test both theoretical and applied aspects of the course. Exams include multiple-
choice and/or short answer questions to demonstrate progress toward the learning objectives. They may
also include free-response or open-ended questions to demonstrate comprehensive mastery. Students are
expected to write correct code (abstract pseudo-code and C++). You may also be asked to read algorithms
and determine expected behavior of novel computer code. Exam grading primarily follows correct reasoning
but may include deductions for major syntax errors, algorithmic inefficiency, or poor implementation.

You may use a single 8.5"x11" reference sheet (front and back OK). You may not use any additional resources.
You are expected to bring a non‐graphing scientific calculator. You must show how you arrived at your
answers to receive full credit.

Description and Assessment of Assignments
All projects and assignments must be submitted electronically either through source code management (e.g.
Github) or for auto-grading. There is no “paper-copy”submission required or allowed. Review requirements
for each assignment before submission.

No submission should be “headless” and should include a README file to describe any methods, testing,
and validation.

Grading Breakdown

Assessment Tool (assignments) % of Grade

Homework 40%

Project 20%

Midterm Exam 20%

Final Exam 20%

Assignment Submission Policy

Grading will be handled by both automatic and manual means. Code submissions may be reviewed and
applied a series of test cases to determine function.

Page 4

Course Schedule: A Weekly Breakdown

 Topics/Daily Activities Readings/Preparation Deliverables

Week 1

Intro: motivation and
goals

Methods of proof
(Induction, proof by
contradiction)

Introduction to unit tests
and version control

Lecture slides

Software and environment setup
SCM and tooling

Week 2

Runtime complexity and
Big-O notation
C++ introduction: basics,

Lecture slides
[1]: Ch. 2, 3
[2]: Pt. 1, Sec. 6, 9, 12, 13

HW1 assigned

Week 3

C++ functions, pointers,
and references

C++ STL (string, vector)

Lecture slides
[1]: Ch. 10
[2]: Ch. 14, 18-21, 27, Pt. 4

Week 4 Data structures: stack,
linked list, queue, tree

C++ classes, member
variables and methods

Other STL darta
structures, set, map,
algorithm

Lecture slides
[1]: Ch. 10
[2]: Ch. 14, 18-21, 27, Pt. 4

HW2 assigned

Week 5

Data structures II: heap,
tree

Binary search and binary
search trees

Recusion: divide and
conquer

[1]: Ch. 11
[1]: Ch. 12

HW3 assigned
Project Discussion

Week 6

Dynamic Programming HW4 assigned
Midterm

Week 7

Introduction to graphs

Graph representations

Graph search and
traversal (DFS, BFS,
topological sort)

 Project Discussion

Page 5

Projects
Teams of two students (teams of one or three with instructor approval) must design and develop a software
solution to a self-identified “mock” industry or research problem. The instructor will guide teams with
difficulty identifying a suitable topic. Groups may implement solutions to problems with prior solutions
provided their efforts demonstrate mastery of the course material. Teams are also encouraged to devise
solutions to novel problems of particular interest to their backgrounds, interest, or research. Groups may
substantially abstract problems from original context to fit within the project timeline and simplify both
constraints and scale. All projects must obtain the instructor’s written approval. Teams will prepare and
present their approved project and show how it applies course material, concepts, and best-practices.
Attendance and participation during the project presentation session(s) are mandatory.

Requirements
Project topics must include sufficient mathematical and algorithmic complexity and either include or extend
substantive material from the course. Teams should treat the project as a platform to demonstrate mastery
of design specification, algorithmic analysis, testing, debugging, and result validation. All projects must use
the C++ language as the primary computer language unless approved explicitly in writing by the instructor.
But teams may use or integrate additional languages for tooling and support.

Example projects
1. Document database engine: Develop an interface for writing and retrieving documents from a

managed storage engine. The system should not wrap another database engine but should expose
a protocol for authentication, communication, and error handling. It may also explore disaster or
corruption recovery.

2. Semantic translator: Build a system convert an input string or stream from one defined
semantic/language to another. The mapping should not be a trivial one-to-one and should require
the retention of state or combination of non-contiguous information.

3. Digitial signal processor: Design a complete software package to load and manipulate digital signal
data (e.g. audio, image, video). It should be a complete user experience and provide facility beyond
a single-purpose tool. It should include state information to provide feedback based on a sequence
of user input such as Undo, Redo, and real-time updating.

Week 8

Graph search and
traversal (DFS, BFS,
topological sort)

Shortest distance
algorithms

Lecture slides
[1]: Ch. 22

Project Phase 1

Week 9 Backtracking Lecture Slides Project Phase 2

Week 10

Sorting algorithms [1]: Ch. 6
[1]: Ch. 7, 8

Project Phase 3

Week 11

Review and reflection Lecture slides

Final Project Presentation

Week 12

Final exam

Page 6

Grading and Milestones
Topic proposal week 10 10%
Phase 1 – Design, components, classes, and tests week 13 15%
Phase 2 – Integration and deployment week 15 20%
Demo and presentation finals 20%
Project report and video 35%

Deliverables and demo
1. Written project report: the project report should summarize the topic, provide relevant background

(theoretical or applied), timeline and contributions, and document challenges and extensions. It
should provide discussion sufficient that an uninformed expert could understand the logic,
algorithmic decisions, and implementations. Teams should provide quantifiable metrics to justify
engineering tradeoffs.

2. Presentation: Approximately 10 minute (depends on class size) presentation to describe to the class
their topic problem and their solution. It should provide only what is necessary to understand the
“what” and “why” and include minimal theoretical background.

3. Video: 3-4 minute video that describes the problem, your design, and implementation. You may
choose to upload this to a video sharing site such as YouTube but that is not required. All team
members must participate equally.

4. Source code: submitted to instructor by providing link to pull from github.

Page 7

Statement on Academic Conduct and Support Systems

Academic Conduct:

Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is
a serious academic offense with serious consequences. Please familiarize yourself with the discussion of
plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards”
policy.usc.edu/scampus-part-b. Other forms of academic dishonesty are equally unacceptable. See
additional information in SCampus and university policies on scientific misconduct, policy.usc.edu/scientific-
misconduct.

Support Systems:

Counseling and Mental Health - (213) 740-9355 – 24/7 on call
studenthealth.usc.edu/counseling
Free and confidential mental health treatment for students, including short-term psychotherapy, group
counseling, stress fitness workshops, and crisis intervention.

National Suicide Prevention Lifeline - 1 (800) 273-8255 – 24/7 on call
suicidepreventionlifeline.org
Free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7
days a week.

Relationship and Sexual Violence Prevention Services (RSVP) - (213) 740-9355(WELL), press “0” after hours –
24/7 on call
studenthealth.usc.edu/sexual-assault
Free and confidential therapy services, workshops, and training for situations related to gender-based
harm.

Office of Equity and Diversity (OED) - (213) 740-5086 | Title IX – (213) 821-8298
equity.usc.edu, titleix.usc.edu
Information about how to get help or help someone affected by harassment or discrimination, rights of
protected classes, reporting options, and additional resources for students, faculty, staff, visitors, and
applicants.

Reporting Incidents of Bias or Harassment - (213) 740-5086 or (213) 821-8298
usc-advocate.symplicity.com/care_report
Avenue to report incidents of bias, hate crimes, and microaggressions to the Office of Equity and Diversity
|Title IX for appropriate investigation, supportive measures, and response.

The Office of Disability Services and Programs - (213) 740-0776
dsp.usc.edu
Support and accommodations for students with disabilities. Services include assistance in providing
readers/notetakers/interpreters, special accommodations for test taking needs, assistance with
architectural barriers, assistive technology, and support for individual needs.

USC Campus Support and Intervention - (213) 821-4710
campussupport.usc.edu
Assists students and families in resolving complex personal, financial, and academic issues adversely
affecting their success as a student.

Diversity at USC - (213) 740-2101
diversity.usc.edu

https://policy.usc.edu/scampus-part-b/
http://policy.usc.edu/scientific-misconduct
http://policy.usc.edu/scientific-misconduct
https://studenthealth.usc.edu/counseling/
https://engemannshc.usc.edu/counseling/
https://engemannshc.usc.edu/counseling/
http://www.suicidepreventionlifeline.org/
http://www.suicidepreventionlifeline.org/
http://www.suicidepreventionlifeline.org/
https://studenthealth.usc.edu/sexual-assault/
https://engemannshc.usc.edu/rsvp/
https://engemannshc.usc.edu/rsvp/
https://equity.usc.edu/
http://titleix.usc.edu/
https://usc-advocate.symplicity.com/care_report/
https://studentaffairs.usc.edu/bias-assessment-response-support/
https://studentaffairs.usc.edu/bias-assessment-response-support/
http://dsp.usc.edu/
https://campussupport.usc.edu/
https://diversity.usc.edu/

Page 8

Information on events, programs and training, the Provost’s Diversity and Inclusion Council, Diversity
Liaisons for each academic school, chronology, participation, and various resources for students.

USC Emergency - UPC: (213) 740-4321, HSC: (323) 442-1000 – 24/7 on call
dps.usc.edu, emergency.usc.edu
Emergency assistance and avenue to report a crime. Latest updates regarding safety, including ways in
which instruction will be continued if an officially declared emergency makes travel to campus infeasible.

USC Department of Public Safety - UPC: (213) 740-6000, HSC: (323) 442-120 – 24/7 on call
dps.usc.edu
Non-emergency assistance or information.

https://diversity.usc.edu/
https://diversity.usc.edu/
http://dps.usc.edu/
http://emergency.usc.edu/
http://dps.usc.edu/

	For Summer 2022:
	If you are taking an internship or are not in Los Angeles and want to take the course online, sign up in the DEN Section.
	All students (even non-DEN on-campus students) should be able to sign up in the DEN Section for the Summer. Use https://courses.uscden.net/d2l/login or contact DEN at dentsc@usc.edu or 213-740-9356 for help.
	Course Description
	This course provides a survey of topics required for advanced computer programming. It is targeted to graduate electrical engineering students with some prepatory (but perhaps informal) background programming experience. It teaches knowledge and dev...
	A student that successfully completes this course will:
	 Understand code to execution including tokenization, compiling, and linking.
	 Apply step-wise debugging to identify causes of software defects.
	 Utilize modern programming practices such as STL objects and object oriented (OO) programming including inheritance, overloading, templates, and polymorphism.
	 Possess knowledge to identify and explain standard algorithms (sort, search, recursion) and data structures (tree, hash, lists).
	 Develop skills to analyze novel code for its performance in both time and space complexity.
	 Be comfortable deciding between multiple solutions given optimization or cost criteria.
	 Apply test-driven software design and understand its role in minimizing errors and regression.
	 Understand the connection between running software and underlying hardware including basics of threading, interrupts, memory management, caching, and device access.
	Course Notes
	Required Readings and Supplementary Materials

