ASTE 331b, Spring 2022
Spacecraft Systems Engineering

3 units
Lectures: Fridays 1:00 – 3:50 PM, In-Class (THH 108) and Online
Zoom Link: https://usc.zoom.us/j/91043555726 (Meeting ID 910 4355 5726)
All lectures are recorded and charts will generally be available ahead of class.

Class updates with respect to COVID-19
• We will work to ensure that the online & in-class experiences are similar
• Office hours that are set-up after class can be in-person or virtual. Other times will be virtual via Zoom.
• In the event that I am on travel or otherwise unavailable, I may pre-record a lecture for our class period.

Instructors
Jim Chase, chasejam@usc.edu
Office Hours: By appointment.
Preferred times are weekdays (M-Th) early (6-8am), late (4-6pm) or weekends (9am-5pm).
Zoom Link: https://usc.zoom.us/j/5539298026 (Meeting ID 553 929 8026)

Julia Woomer, woomer@usc.edu
Office Hours: Mondays 10:00-11:30am & Wednesdays 4:30-6:00pm. https://usc.zoom.us/j/5052266323

Congratulations for completing ASTE 331a and welcome to 331b! Previously, we covered a subset of the spacecraft subsystems (propulsion, GN&C, telecom, C&DH, power, thermal, and mechanical), along with their general interrelationships. This hopefully has given you a basic level of understanding for how a spacecraft functions from which we can now pursue additional breadth and depth. For breadth, we’ll be looking at the system-level design that includes the project lifecycle; systems engineering; integration & testing; mission failures and fault protection; and mass, power, data, and cost analyses. For depth, you will dive into your designated subsystem where you will be responsible for the design of your team’s concept. As before, these assignments will not be easy, but we will work together to ensure that they are achievable and help provide an understanding of complex engineering design that is critical in the aerospace industry and applicable across many other fields.

As your returning guide for this adventure, I am a part-time lecturer coming from the NASA Jet Propulsion Laboratory. I have been at JPL for nearly twenty years, where I have supported a diverse assortment of missions, including the conceptual designs for lunar landers and asteroid sample return missions and the realized missions of the Mars Phoenix Lander and the Curiosity Rover. I am looking forward to seeing all of you again this semester and am committed to helping you achieve the course objectives. Below you will find the details of this course, which will be loosely similar to 331a.

Course Description
Introduction to spacecraft subsystems, including propulsion, attitude dynamics and control, structures, communications, power, and thermal control, along with the space environment. Systems engineering as applied to spacecraft.

Note that ASTE 331b is the second semester of a two-semester course. The first semester covered the space environment and spacecraft subsystems. The second semester encompasses space systems engineering and the design process, along with a spacecraft design project completed in teams.

Prerequisite: ASTE 331a – Spacecraft Systems Engineering (1st semester)
Recommended Preparation: Proficiency in Win/Unix OS & Microsoft Office, introductory knowledge of Matlab
Learning Objectives

After taking the two-semester course, students will:

- Understand the fundamental physics of spacecraft systems
- Understand the relationship between mission requirements and system performance requirements
- Design subsystems to meet performance requirements
- Make design choices taking system tradeoffs into account
- Understand the steps in performing a complete spacecraft system design

Description and Assessment of Assignments

The table below describes the key course components that are considered for grading. Given the nature of this year’s course, the emphasis of participation has been increased to promote overall engagement with the class via in-person/virtual lectures, Piazza, study groups, and office hours. For each assignment, you’ll complete it either (a) individually, (b) as part of your subsystem group, or (c) as part of your project design team. Note that this “matrix organization” structure is often used at larger organizations to help ensure common standards across technical disciplines and team collaboration across projects. While the intent is to follow the approach described below, it is flexible and may evolve over the course of the semester with changes communicated in class.

Please note that this format is structured to benefit the overall class, but if there are concerns, please let us know, and we can work to accommodate them depending on the circumstance.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>%</th>
<th>Approximate Criteria</th>
<th>Approach</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>Lectures Weekly class lectures, including attendance and participation</td>
<td>10%</td>
<td>• ≥ 90% attendance</td>
<td>End-of-month self-assessments that are reviewed, audited, & graded.</td>
<td>Note that participation can be traded across categories (e.g., a weekly study group can offset not posting to Piazza).</td>
</tr>
<tr>
<td></td>
<td>Piazza Posting questions, answers, or comments to online threads</td>
<td>10%</td>
<td>• ≥ 25% of classes with video enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small Groups Participating in study groups or instructor/TA office hours</td>
<td>10%</td>
<td>• ≥ 1 post every 2 weeks in Piazza</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feedback Review all feedback provided</td>
<td>10%</td>
<td>• ≥ 1 meeting every week</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-min Eval Submission of weekly 1-min evaluation w/feedback on the course</td>
<td>10%</td>
<td>• Review, understand, & apply</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>• ≥ 90% weekly submission rate</td>
<td>Blackboard generates an individualized submission rate, which will be used.</td>
<td></td>
</tr>
<tr>
<td>Individual Work</td>
<td>Reading Weekly reading assignments from SMAD or other references</td>
<td>20%</td>
<td>Criteria for assigned problems, tests and projects will vary, but here are typical criteria:</td>
<td>Either part of assignments or possible quiz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Homework Excel-based assignments similar to 331a that focus on systems eng.</td>
<td>20%</td>
<td>• On-time & complete submission</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Exam Evaluates your basic understanding of s/c design & systems engineering</td>
<td>20%</td>
<td>o Submitted on time?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subsystem Analysis In-depth subsystem analysis due incrementally over the semester</td>
<td>20%</td>
<td>o All instructions followed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subsystem Feedback Documented feedback on the designs of your subsystem group members.</td>
<td>20%</td>
<td>• Technical accuracy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subsystem Workbooks The continued development of an Excel workbook (from 2021) that will serve as your subsystem design guide</td>
<td>20%</td>
<td>o Are there any errors?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design Quizzes Similar to the 331a design problems to support your projects</td>
<td>20%</td>
<td>• Communication & formatting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Team Assignments Will help structure your designs over the semester (led/submitted by lead)</td>
<td>20%</td>
<td>o 331ab best practices followed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STM System Trades Model & Presentation, due incrementally over semester</td>
<td>20%</td>
<td>o Is the assignment well organized and easy to review?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presentation</td>
<td>20%</td>
<td>Instructor/TA grade group submissions (group members receive the same grade).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Approximate Schedule

The times and topics given below are approximate, and the list may change as the semester progresses. We will see how things go and take more or less time on each topic as seems appropriate. Note that this schedule will be discussed in our first class.

Assignment Format & Timeliness

All assignments are expected to be grammatically correct with clear and readable formatting that allows the audience to quickly access, understand, and assess the content. To help with this objective, I will provide a course handout, “Writing, Presentation, and Analysis Best Practices,” that should generally be followed when submitting all assignments. The expectation is that you will complete assignments prior to each Friday class unless otherwise specified. If there is a delay, please communicate with me in a timely manner and, in writing, with an estimated completion date. If your requests are in advance, infrequent, and you submit by your estimated completion date, no points will be deducted.

Important: Please begin the assignments and ask new (& review existing) questions via Piazza several days in advance, as early questions will help the overall class, whereas last-minute ones can cause confusion and/or unnecessary rework. In this context, I will work harder on providing timely and detailed answers to those submitted in advance, whereas answers just prior to the deadline may not be as helpful.

Feedback on assignments will vary depending on several factors. Historically, I have provided more detailed written feedback early, which gradually diminishes over the course of the semester. I have typically augmented this with individual office hours, where we can step through assignments either before or after submission. Given the collaborative nature of many of the assignments, it may be more helpful to set-up small group zoom sessions in lieu of individual office hours, where I can answer questions and provide more detailed feedback at one time.

Note that when written feedback is provided, the expectation is that you’ll review and incorporate into future assignments. This is especially relevant for items such as formatting, file name conventions, table structures, etc.
Collaboration

Across the engineering discipline, collaboration is essential to the design and development of new products. Therefore, it is critical that you develop the requisite skills for working in groups without compromising your academic integrity or, more specifically, “presenting someone else’s ideas as your own.” Here are my guidelines that should help you navigate this boundary:

- I strongly encourage participating in study groups, including sharing ideas/concepts, reviewing others’ work, and providing helpful feedback.
- If you create a product (e.g., idea, template, algorithm, etc.) that is not the direct objective of an assignment or exam, you are encouraged to share it with others.
- If/when you receive such a product, please provide a citation that acknowledges the contribution of the author. Additionally, if the product is significant in your resulting work (e.g., set of algorithms), please annotate it to show that you understand and agree with the logic. Note that in a highly collaborative environment, it is this type of iterative review and discussion that enhances (rather than compromises) intellectual understanding.

Grading Scale

Assignments/tests are graded per the criteria described earlier on either a 10-point or 100-point scale depending on the magnitude of the submission, where ≥ 90% is excellent (~A), 80-90% is good (~B), 70-80% is fair (~C), 60-70% needs improvement (~D), and < 60% is poor (~F).

For the cumulative midterm and final grades, the individual components are weighted as described in the prior table to produce an overall score (0-100). These resulting scores will generally result in letter grades that correspond with the original grading scale (i.e., ≥ 90 = A, 80-90 = B, etc.), but I may tailor this scale to better reflect statistically significant peer groups within the class consistent with USC policy. Note that as part of my grading, I regularly review students performing at the top, median, and bottom of the class to ensure that their resulting grades are consistent with their knowledge of the course expectations.

Note that “+” and “-” grades will be assigned to ± 3 points across each letter boundary (e.g., 90-93 = A-, 87-90 = B+). While USC does not recognize an A+ (≥ 97%), I will note this grade and may refer to it in letters of recommendation.

Required Readings and Supplementary Materials

The textbooks referenced this semester are:

SMAD is a great reference with significant information from actual missions, which you are likely to use throughout the course and your career. However, its explanations are a bit terse, and therefore I'll cover many of the required topics via weekly charts that will hopefully provide a better explanation. The NASA SE Handbook (available electronically) is also a great resource that you may use throughout your career as a helpful reference. Finally, Pisacane is a traditional textbook that defines concepts starting from first principles. I’ll cover the essential information in class, but it might be useful if you are interested in more depth or context behind the material.

Additionally, there will be supplementary materials that will be announced in class and provided via Blackboard.
Online Course Materials

Blackboard: This is the primary online site for this course. The primary features used are posting announcements, submitting assignments, and providing access to course materials. It is recommended that you set the notification settings to ensure prompt updates via email or text.

- Contents: Lecture Charts & Recordings, Class Assignments, Reference Material, Templates, STM, etc.
- Link: https://blackboard.usc.edu/

Piazza: This is a supplemental online site that is used as a forum for online discussions. Please use this site (rather than email to me) for questions.

- Link: https://piazza.com/class/

Software Used

The following SW applications are intended for use in this two-semester course, although specific applications of them will vary depending on the progress of the course.

Microsoft Office (Excel, Powerpoint, Word): This tool suite is critical across the aerospace industry with wide use to support a variety of applications. In 331ab, we will be extensively using Excel, occasionally using Powerpoint, and rarely using Word. This software should be easily accessible to you.

Systems Trades Model (STM): STM is an Excel-based “template” developed at the NASA Jet Propulsion Laboratory that helps the user to decompose a spacecraft design into a module-based, hierarchical structure that is mapped into distinct spreadsheets. It initially functions as a template that helps the user methodically separate a design into individual hardware components, power & cost estimates, parameters, dependencies, and design notes that can be developed collaboratively. While it is a specialized tool for JPL conceptual studies, it is also a good example of how Excel is used to build sophisticated systems engineering tools that are common throughout the industry.

Virtual Desktop Infrastructure (VDI): Viterbi MyDesktop is the current label for virtual computing resources available to students of select engineering classes. It is intended to provide students with access to engineering and scientific software packages whose licensing terms prohibit their installation on personally owned computers, involve complex installation procedures, or require elevated hardware resources for satisfactory experience. 331b should (TBC) have access to both general and enhanced VDI.

- General VDI: STK, Matlab
- Enhanced VDI: Thermal Desktop, NX
- Access provided through the end of the semester.
- Technical Support is available by via enghelp@usc.edu. When submitting questions, please provide as much information as possible, including name, USC email, class, professor and a description of the issue.
- Link: https://viterbi.usc.edu/instructional-support/

STK (Systems Toolkit): A package for setting up, simulating, and visualizing the operation of space missions. Launch, orbits and station keeping, attitude dynamics and control, communications, and ground station operations can all be simulated. It is available via both VDI and the ASTE department, which has a site license courtesy of Analytical Graphics Inc. (AGI). For installation and licensing of STK on your local machine, see http://aste-classes.usc.edu/stk.

Matlab: A general-purpose numeric computation environment, with some symbolic capability. An interpreted C-like language, extended with vector and matrix syntax, is coupled with mathematics and graphics libraries. The student who is comfortable with Matlab will be able to do a numerical solution of any problem he or she is faced with, as well as provide graphical representation of the solutions.

NX (Siemens): A package for computer-aided design (CAD) and analysis. It is used in AME coursework, so you may already have it installed. In this class, NX is used for structural analysis, including resonant vibration frequencies.

Thermal Desktop: A package for computer-aided mechanical and thermal analysis of structures. This software is more likely to be used in the second semester for analysis of the end-to-end spacecraft.
Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism – presenting someone else's ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards” policy.usc.edu/scampus-part-b. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

Support Systems

Student Counseling Services (SCS) – (213) 740-7711 – 24/7 on call
Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention. engemannshc.usc.edu/counseling

National Suicide Prevention Lifeline – 1 (800) 273-8255
Provides free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week. www.suicidepreventionlifeline.org

Relationship and Sexual Violence Prevention Services (RSVP) – (213) 740-4900 – 24/7 on call
Free and confidential therapy services, workshops, and training for situations related to gender-based harm. engemannshc.usc.edu/rsvp

Sexual Assault Resource Center
For more information about how to get help or help a survivor, rights, reporting options, and additional resources, visit the website: sarc.usc.edu

Office of Equity and Diversity (OED)/Title IX Compliance – (213) 740-5086
Works with faculty, staff, visitors, applicants, and students around issues of protected class. equity.usc.edu

Bias Assessment Response and Support
Incidents of bias, hate crimes and microaggressions need to be reported allowing for appropriate investigation and response. studentaffairs.usc.edu/bias-assessment-response-support

The Office of Disability Services and Programs
Provides certification for students with disabilities and helps arrange relevant accommodations. dsp.usc.edu

Student Support and Advocacy – (213) 821-4710
Assists students and families in resolving complex issues adversely affecting their success as a student EX: personal, financial, and academic. studentaffairs.usc.edu/ssa

Diversity at USC
Information on events, programs and training, the Diversity Task Force (including representatives for each school), chronology, participation, and various resources for students. diversity.usc.edu

USC Emergency Information
Provides safety and other updates, including ways in which instruction will be continued if an officially declared emergency makes travel to campus infeasible. emergency.usc.edu

USC Department of Public Safety – UPC: (213) 740-4321 – HSC: (323) 442-1000 – 24-hour emergency or to report a crime. Provides overall safety to USC community. dps.usc.edu