SSCI 680, Advanced Spatial Computing

Syllabus

Units: 4

Term — Day — Time: Fall 2021—Friday—2:00-4:50pm (PST).

Location: AHF B57J*

*This class will be offered in person with a hybrid mode. All meetings will be streamed/recorded for remote access for maximum options and accessibility. Students are expected to comply with all aspects of USC’s COVID-19 policy.

Instructor: Kenan Li, PhD
Office: AHF 146
Regular Office Hours: Tuesdays from 10 am to 11 am and Thursdays from 9:30 am to 10:30 am (PST). Also available by appointment via email.
Contact Info: kenanl@usc.edu.

Library Help: Andy Rutkowski
Office: VKC 36B
Office Hours: By appointment via email.
Contact Info: arutkows@usc.edu.

IT Help: Richard Tsung
Office: AHF 145D
Office Hours: By appointment via email.
Contact Info: ctsung@usc.edu.
Course Scope and Purpose

This class will cover the theoretical foundations, methods, techniques, and software systems for spatial computing. This includes the latest research on topics that are central to spatial-enabled computing technologies and systems, including the geospatial semantic web, geospatial linked data, spatial data mining, geocoding, document linking, location-based services, volunteered geographic information, geospatial feature extraction, geospatial layer registration and alignment, and geospatial mashups. This class will also cover various types of spatial data, including satellite and aerial imagery, raster (scanned) maps, vector datasets, news articles, web pages, linked data, and streaming data. Students will also gain a deep understanding and hands-on experience in the software for spatial computing, including geographic information systems (e.g. ArcGIS), online GIS (e.g. ArcGIS Online, Bing Maps, Google Earth), semantic web tools, and spatial databases through a combination of homework and projects. Students will learn about the wide variety of geospatial data and services available, including how to find relevant data and transform it as needed so that it can be used for solving specific problems.

Learning Outcomes

On completion of this course, students will be able to:

- Describe the theoretical foundations of geospatial data and its various representations
- Select and use the appropriate spatial computing technologies and systems to solve any of a variety of real-world problems
- Build integrated applications that combine geographic data and applications for processing that data
- Understand, create, and apply semantic descriptions of geographic data which can then be used for searching, integrating, and sharing geographic knowledge
- Discuss the relevant spatial computing systems and techniques for working with geospatial data
- Apply relevant spatial computing techniques to solve spatial problems
- Critically evaluate spatial computing software and systems and determine whether they have been applied in appropriate ways

Prerequisite(s): None
Co-Requisite(s): None
Concurrent Enrollment: None
Recommended Preparation: Enrollment in a USC PhD Program

Harassment, sexual misconduct, interpersonal violence, and stalking are not tolerated by the university. All faculty and most staff are considered Responsible Employees by the university and must forward all information they receive about these types of situations to the Title IX Coordinator. The Title IX Coordinator is responsible for assisting students with supportive accommodations, including academic accommodations, as well as investigating these incidents if the reporting student wants an investigation. The Title IX office is also responsible for
coordinating supportive measures for transgender and nonbinary students such as faculty
notifications, and more. If you need supportive accommodations you may contact the Title IX
Coordinator directly (titleix@usc.edu or 213-821-8298) without sharing any personal
information with me. If you would like to speak with a confidential counselor, Relationship and
Sexual Violence Prevention Services (RSVP) provides 24/7 confidential support for students
(213-740-9355 (WELL); press 0 after hours).

Course Structure
The course will be taught using a lecture format where the instructor will present the core
topics, and the students will participate and give lectures on some of the subtopics. There are
weekly quizzes to ensure that students keep up with the material and readings. In the first half
of the course, there are also weekly homework assignments to give students first-hand
experience with the wide variety of software and systems that can be used for spatial
computing. In the second half of the course, students will form teams and propose and conduct
a class project that will give them more depth in one or more course topics of interest. The class
will encourage student participation with ample discussion time for reviewing readings,
homework, quizzes, and other course materials. This is a four credit, one semester course.
Students should expect to spend 10-15 hours per week completing the work in this course.

Technological and Communication Requirements
The mapping software and geospatial data required for course assignments will be accessed
using computing resources provided by the Spatial Sciences Institute. In addition, every student
must have the following technology requirements:

- A computer with a fast Internet connection
- An up-to-date web browser to access the SSI Server

SSI Server and Tech Support – This course utilizes the SSI GIST Server which is a virtual desktop
giving access to many different professional software. If you are unable to connect to the
server or experience any type of technical issues, send an email using your USC account to
GIST Tech Support at spatial_support@usc.edu, making sure to copy (cc) me on the email.

Communications – All materials to be handed in will be submitted via Blackboard. It is each
student's responsibility to stay informed about what is going on in our course. In addition to
email about time-sensitive topics, any important announcements will be posted on the
Announcement page in Blackboard. Be sure to check these each time you log onto
Blackboard.

I will send via email through Blackboard any notices that are time sensitive. Please be sure
that you read as soon as possible all email sent from Blackboard or me. Do not ignore course
email until the day before assignments are due. Also double check to be sure that email sent
from the USC Blackboard account does not go into your junk mail!

While I am usually on-line all day and will probably respond to emails from students very
quickly, I will endeavor to respond to all email within 24 hours of receipt, aiming for no more
than 72 hours delay. In the rare case when I expect to be off-line for more than 72 hours, I will post an announcement on the Blackboard site.

Discussion forums – On the Blackboard site, I will post a series of discussion threads relevant to various sections of the course. Discussions provide a key means for student-to-student discussion and collaboration in addition to the face-to-face contact you will have in the classroom. Here students can provide support to each other while working on your assignments, sharing hints and helpful tips, as you would in a classroom laboratory. Please post your questions about assignments there, as you would ask them in the classroom. I monitor the discussion threads and offer comments when necessary, but more importantly, consider the discussion board a key way to connect with your classmates and share your discoveries.

Required Readings and Supplementary Materials

The weekly readings will be accessed via the USC Library’s electronic collections and / or provided by the instructor via Blackboard.

Description and Assessment of Assignments

Students must prepare a lecture, participate in a team project, participate in class discussion, take weekly quizzes, and turn in homework assignments.

Your grade in this class will be determined based on several different assessment tools.

Class Participation (10%) – A class participation grade for the semester will be assigned based upon how actively students engage in the course. Students will be required to read all material outlined for each week of the course and be prepared to lead and participate in group discussions about the readings in class. Failure to attend, or not be adequately prepared to discuss the readings will lead to the assignment of a lower grade for that week.

Class Presentation (20%) – Students will conduct a seminar on a topic determined in consultation with the instructor. Students will be expected to become an expert on that topic and present a short lecture of 30-45 minutes on the topic.

Weekly Assignments (20%) – Students will be assigned five weekly homework during the first half of the course.

Quizzes (20%) – There will be weekly quizzes on the lectures and readings from the previous week. There is no final, so this is the assessment of how well the students have learned the material.
Team Project (30%) – In the second half of the course, students will work in teams on projects determined in consultation with the instructor. The team will propose their own projects based on the topics covered in class. The grades for the final project will be spread across three components as follows: (1) the proposal describing the proposed project, including software to be implemented and any data to be acquired (10%), (2) a final report (10%), and (3) both an in-class and a recorded demo presentation video of your final project (10%).

For anything that requires a presentation in this class as well as for the team project (the proposal, final report, and presentation), they need to address the following questions: “What is the project trying to do?”, “How is it done today, and what are the limits of current practice?”, “What is your approach, and what is new in your approach?”, “Who cares? If you succeed, what difference will it make?”, “How do you know if your approach is successful?”, and “What are the future extensions?”

Grading Breakdown

Careful planning and a serious, consistent commitment will be required for you to successfully navigate the various deliverables in this and other SSI graduate courses. The table below summarizes the SSCI 680 course assignments and their point distribution:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Number</th>
<th>Points Each</th>
<th>Total Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Participation and Presentations, Quizzes, and Assignments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Participation</td>
<td>--</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>Quizzes</td>
<td>10</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Weekly Assignments</td>
<td>5</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Class Presentation</td>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Project Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposal</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Final Report</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Final Presentation/Video</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

1 This is the modified version of the famous “Heilmeier Catechism”: http://www.darpa.mil/work-with-us/heilmeier-catechism
Assignment Submission Policy

Assignments will be submitted for grading via Blackboard using the due dates specified in the Course Schedule below.

Additional Policies

Students are expected to attend and participate in every class session and to complete and upload all assignments before the deadlines detailed in the Course Schedule.

Strict penalties apply for late assignments as follows:

- All assignments will be penalized 2 points up to SEVEN days late. No points will be given for submissions more than SEVEN days late. Note that all assignments worth 2 points will receive 0 points if submitted late.
- Every student has FIVE free late days for the homework assignments. You can use these five days for any reason separately or together to avoid the late penalty. There will be no other extensions for any reason.
- Additionally, no written work will be accepted for grading after 11:59 pm Pacific Time (PST) on the last day of classes.

Schedule

<table>
<thead>
<tr>
<th>Week 1 8/27</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to Spatial Computing: Spatial Data Basics</td>
<td>Clarke (2011); VoPham et al. (2018)</td>
<td>- Group discussion based on reading</td>
</tr>
<tr>
<td></td>
<td>Brief introductions with a discussion of class goals, projects, technologies, plans, and expectations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to basics of spatial data, including representations of spatial data, structured spatial data, unstructured spatial data, streaming data, coordinate systems, datum, projections, etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 2 9/3</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to Spatial Computing (Cont’d):</td>
<td>Clemmer (2013) (optional); Briggs et al. (1997); Hoek et al. (2008); Jiang et al. (2015)</td>
<td>- Group discussion based on reading</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- In-class quiz</td>
</tr>
<tr>
<td>Week 3</td>
<td>9/10</td>
<td>Structured Spatial Data:</td>
<td>Güting (1994); Boundless (2017)</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spatial Databases and Beyond</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to capabilities of spatial systems that handle large spatial datasets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hands-on use of the Postgres PostGIS spatial database</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/17</td>
<td>Online Spatial Data:</td>
<td>Microsoft (2020); Google (2020); Facebook (2020); Goodchild & Li (2012);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Online GIS</td>
<td>- Group discussion based on reading</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discussion and hands-on training with online GIS software and datasets, with a focus on Google Maps, Bing Maps, and Google Earth</td>
<td>- In-class quiz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Submit assignment 1 on the Blackboard no later than 11:59 p.m. on Fri., 9/17</td>
</tr>
<tr>
<td></td>
<td>9/24</td>
<td>Online Spatial Data (Cont’d):</td>
<td>Lin et al. (2017); Arsanjani et al. (2013); WorldClim (2017); Zhang et al. (2019)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Publicly Available Online Geospatial Datasets</td>
<td>- Group discussion based on reading</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to recent developments and applications of publicly available geospatial datasets online, including volunteered geographic information (VGI), widely-used open geospatial sources, techniques for crowd-sourcing data</td>
<td>- In-class quiz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to attempts to evaluate the quality of VGI data</td>
<td>- Submit assignment 2 on the Blackboard no later than 11:59 p.m. on Fri., 10/1</td>
</tr>
</tbody>
</table>
| Week 6 | Machine-Understandable Spatial Data: | Swartz (2002); Palmer (2001); Fonseca (2008); | - Group discussion based on reading
- In-class quiz
- Submit assignment 3 on the Blackboard no later than 11:59 p.m. on Fri., 10/8 |
| 10/1 | Geospatial Semantic Web | | |
| | Introduction to methods and applications for representing and reasoning about geospatial data using the infrastructure of the Semantic Web
Hands-on use of tools for creating and using geospatial semantic data. | | |
| Week 7 | Machine-Understandable Spatial Data (Cont’d): | Kuhn (2005); Koubarakis et al. (2012); Janowicz et al. (2012) | - Group discussion based on reading
- In-class quiz
- Submit assignment 4 on the Blackboard no later than 11:59 p.m. on Fri., 10/15
- Submit teams and propose team presentation topics on the Blackboard no later than 11:59 p.m. on Fri., 10/22 |
| 10/8 | Geospatial Linked Data | | |
| | Introduction to research and techniques for creating and using geospatial linked data | | |
| Week 8 | Unstructured Spatial Data: | Lieberman et al. (2007); Amitay et al. (2004); Han et al. (2014); Monteiro et al. (2016) | - Group discussion based on reading
- In-class quiz
- Student presentations on the initial final project ideas
- Submit the refined final project ideas and plan on the Blackboard no later than 11:59 p.m. on Fri., 10/29 |
| 10/22 | Linking Text to Location | | |
| | Introduction to methods and applications for linking textual information to geographic locations | | |
| Week 9 | Discussion of Project Proposal: | - Student presentations on the refined final project ideas and plan
- In-class quiz | |
| 10/29 | Discussion and refinement of final project proposals and plan | | |

SSCI 680 Syllabus, Page 10 of 13
| Week 10 | Spatial Data Conflation:
Digital Map Processing |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11/5</td>
<td>Introduction to methods for the extraction and recognition of geographic features from scanned raster maps</td>
</tr>
<tr>
<td></td>
<td>Chiang (2015); Kerle & de Leeuw (2009); Uhl et al. (2017)</td>
</tr>
<tr>
<td></td>
<td>- Group discussion based on reading</td>
</tr>
<tr>
<td></td>
<td>- In-class quiz</td>
</tr>
<tr>
<td></td>
<td>- Submit assignment 5 on the Blackboard no later than 11:59 p.m. on Fri., 11/12</td>
</tr>
</tbody>
</table>

| Week 11 | Spatial Data Conflation (Cont’d):
Registering and Aligning Geospatial Layers |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11/12</td>
<td>Discussion of techniques for automatically aligning various geospatial layers, including both vector and raster layers</td>
</tr>
<tr>
<td></td>
<td>Chen et al. (2006,); Shiba et al. (2020)</td>
</tr>
<tr>
<td></td>
<td>- Group discussion based on reading</td>
</tr>
<tr>
<td></td>
<td>- In-class quiz</td>
</tr>
</tbody>
</table>

| Week 12 | More Unstructured Spatial Data:
Geocoding |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11/19</td>
<td>Introduction to new methods and applications for linking addresses to locations</td>
</tr>
<tr>
<td></td>
<td>Comparing geocoding applications and technologies</td>
</tr>
<tr>
<td></td>
<td>Goldberg et al. (2007); Andresen et al. (2020)</td>
</tr>
<tr>
<td></td>
<td>- Group discussion based on reading</td>
</tr>
<tr>
<td></td>
<td>- In-class quiz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 13</th>
<th>Discussion & Final presentations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/3</td>
<td>Course discussion and team presentations summarizing results and what was learned from the projects</td>
</tr>
<tr>
<td></td>
<td>Shekhar et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>- Team presentations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final Examination</th>
<th>Team Video presentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/8 – 12/15</td>
<td>Online video presentations summarizing results and what was learned from the projects</td>
</tr>
<tr>
<td></td>
<td>- Submit final reports and team video presentations</td>
</tr>
</tbody>
</table>

Statement on Academic Conduct and Support Systems

Academic Conduct
Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards” https://policy.usc.edu/scampus-part-b/. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

Support Systems

Student Counseling Services (SCS) - (213) 740-7711 – 24/7 on call
Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention. https://engemannshc.usc.edu/counseling/

National Suicide Prevention Lifeline - 1-800-273-8255
Provides free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week. http://www.suicidepreventionlifeline.org

Relationship & Sexual Violence Prevention Services (RSVP) - (213) 740-4900 - 24/7 on call
Free and confidential therapy services, workshops, and training for situations related to gender-based harm. https://engemannshc.usc.edu/rsvp/

Sexual Assault Resource Center
For more information about how to get help or help a survivor, rights, reporting options, and additional resources, visit the website: http://sarc.usc.edu/

Office of Equity and Diversity (OED)/Title IX compliance – (213) 740-5086
Works with faculty, staff, visitors, applicants, and students around issues of protected class. https://equity.usc.edu/

Bias Assessment Response and Support
Incidents of bias, hate crimes and microaggressions need to be reported allowing for appropriate investigation and response. https://studentaffairs.usc.edu/bias-assessment-response-support/

Student Support & Advocacy – (213) 821-4710
Assists students and families in resolving complex issues adversely affecting their success as a student EX: personal, financial, and academic. https://studentaffairs.usc.edu/ssa/

Diversity at USC – https://diversity.usc.edu/
Tabs for Events, Programs and Training, Task Force (including representatives for each school), Chronology, Participate, Resources for Students

Resources for Online Students
The Course Blackboard page and the GIST Community Blackboard page have many resources available for distance students enrolled in our graduate programs. In addition, all registered students can access electronic library resources through the link https://libraries.usc.edu/. Also, the USC Libraries have many important resources available for distance students through the link: https://libraries.usc.edu/faculty-students/distance-learners. This includes instructional videos, remote access to university resources, and other key contact information for distance students.