DSCI 510: Principles of Programming for Data Science (4 units)

Term-Day-Time
Fall 2021- Lecture: Wednesday, 12:00-1:20pm
Fall 2021- Lab: Wednesday, 9:00-10:50am

Instructor: Dr. Anna Farzindar
Email: farzinda@usc.edu

Professor’s Office Hours: Wednesday Before class
Office: Physical (GER 202B) or virtual address
Students are advised to make appointments with the professor ahead of time in any event and be specific with the subject matter to be discussed. Students should also be prepared for their appointment by bringing all applicable materials and information.

Textbook (on the web)
Exploring Data In Python 3, plus other materials
You may also wish to consult Think Python 2e

Instructor’s office hours: Tuesday 1:30pm-3:30pm Via Zoom
Students are advised to make appointments with the instructor ahead of time in any event and be specific with the subject matter to be discussed. Students should also be prepared for their appointment by bringing all applicable materials and information.

Catalogue Description:
Introductory programming course for non-Computer Science majors. Programming in Python for retrieving, searching, and analyzing data from the Web. Learning to manipulate large data sets.

Expanded Course Description:
This course is designed to serve as an introduction to computer science concepts and basic programming skills that are specifically geared toward Informatics, and forms a part of the introductory coursework for the program in Communication Informatics. The main objective of this course is to introduce the fundamental concepts behind general computer science and programming, and to give students practical hands-on experience reading and writing computer programs, in order to give them the tools to manipulate large data sets.
The course is designed to be accessible to non-Computer Science major students with little or no programming experience, and emphasizes writing programs that are capable of retrieving and manipulating large amount of data. The first half of the course focuses on Python as a first programming language, while the second half of the course covers selected advanced topics including data visualization, web scraping, database access, and more.

The course will combine lectures, labs, in-class discussion and problem solving, readings, written homework assignments, a mid-term exam, and a final exam.

Course Objectives:
The objective of this course is to train students to write computer code capable of manipulating large data sets. Specifically, students successfully completing this course will achieve two main objectives:

1. Acquire basic concepts in computer science and programming.
2. Develop sufficient proficiency in Python to write applications capable of retrieving, searching, manipulating, analyzing, and displaying data.

Methods of Teaching:
The primary teaching methods will be discussion, case studies, and lectures. Students are expected to perform directed self-learning outside of class which encompasses, among other things, a considerable amount of programming practice.

There will a midterm exam and possibly a comprehensive final exam. There will also be homework assignments and a final project. There will be weekly lab meetings.

Students are expected to have access to a computer that can run the Python programming language and a web browser, and to bring it to class. Beyond that, no special computing facility, hardware or software will be necessary for this course.

Grading Scheme (still subject to change):
Homework Assignments: 20%
Lab: 25%
Mid-Term: 25%
Final Project: 30%
Total 100%

Grades will range from A through F. The following is the rough breakdown for grading:

94 - 100 = A 74 - 76 = C
90 - 93 = A - 70 - 73 = C-
87 - 89 = B+ 67 - 69 = D+
84 - 86 = B 64 - 66 = D
80 - 83 = B- 60 - 63 = D-
77 - 79 = C+ Below 60 is an F
Grading for the course will be based on four or five major components:

1. HOMEWORK – There will be a number of assignments given throughout the semester. Assignments may include exercises from the textbook, and may include additional questions from other sources. Each student is expected to submit the completed assignment when due. All homework assignments are to be submitted individually and students will receive individual scores. Guidelines and additional information will be developed to provide a common vernacular for the assignments. It is crucial that students turn in whatever they have completed on the due date. NO assignment will be accepted late. An incomplete grade will be granted only under the conditions called out in the student handbook, SCAMPUS, which is available online, http://scampus.usc.edu.

2. LABS – There will be laboratory assignments given [roughly] every week. These assignments reinforce the content discussed in lecture. They are to be completed individually, during the lab session. Unless explicitly stated otherwise, late submissions are not permitted.

3. MID-TERM EXAM – A written exam, roughly halfway through the term, covering material taught up to that point.

4. FINAL PROJECT – A final project that builds on the techniques taught in class. The final project will be a programming assignment that addresses a data informatics task. The project will be assigned by week 11, so that students will have about 4 weeks to complete the project.

5. FINAL EXAM – If we decide to have one.

Class Communication:
Blackboard at USC and/or email will be used for class communication.

Books and Readings:
All books, papers or reports will be available to students via the web.

Required Reading:

Class Structure & Schedule:
Class sequence, dates, topics and guest speakers are subject to change as the semester proceeds. Any revisions will be noted and announced in class in advance. **Note that some material will have to be dropped due to a shortened semester. One of the topics towards the end of the semester will probably be removed.**

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics/Activities</th>
<th>Book Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro to programs, variables, conditionals, iteration, types.</td>
<td>1, 2</td>
</tr>
<tr>
<td>2</td>
<td>Types, type coercion, Boolean/logical expressions, review conditional execution, exceptions, functions.</td>
<td>3, 4</td>
</tr>
<tr>
<td>3</td>
<td>Exceptions, "is" vs. "==", iterations (while, for, etc.), strings.</td>
<td>5, 6</td>
</tr>
<tr>
<td>4</td>
<td>Python tracebacks, "repr" vs. "print", file I/O, lists.</td>
<td>7, 8</td>
</tr>
<tr>
<td>5</td>
<td>Dictionaries, tuples, combinations thereof.</td>
<td>9, 10</td>
</tr>
<tr>
<td></td>
<td>Python objects, inheritance, operator overloading, creating multiple/dynamic objects.</td>
<td>14</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>*args, **kargs, dynamic object creation, main and modules. Python review.</td>
<td>1–10, 14</td>
</tr>
<tr>
<td>8</td>
<td>Midterm.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>The DOM, the requests library, web scraping with Beautiful Soup.</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>"Wellness Day"</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>XML, JSON, web APIs.</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>Intro to databases, intro to SQL, multi-DB design, normalization, foreign keys, SQL joins, many-to-many relationships, Twitter spidering, an iTunes XML DB example.</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>More about databases and SQL.</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>SQLAlchemy ORM, and if we have time, Pandas. Regex, advanced web scraping.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Course review, final discussion, project presentations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final project.</td>
<td></td>
</tr>
</tbody>
</table>

Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism – presenting someone else's ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Section 11, Behavior Violating University Standards https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the Office of Equity and Diversity http://equity.usc.edu or to the Department of Public Safety http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us. This is important for the safety of the whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. The Center for Women and Men http://www.usc.edu/student-affairs/cwm/ provides 24/7 confidential support, and the sexual assault resource center webpage http://sarc.usc.edu describes reporting options and other resources.

Support Systems

A number of USC's schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute http://dornsife.usc.edu/ali, which sponsors courses and workshops specifically for international graduate students. The Office of Disability Services and Programs http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency Information http://emergency.usc.edu will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.