ASTE 527 Graduate Space Architecting Studio
aka ASTE 527-Space Exploration Architectures Concept Synthesis Studio
Tuesdays 6:40-9:20pm, ONSITE & ONLINE via USC DEN Webcast WebEx
Refine Creative Skills, Topic Oriented Team Project, Visiting Expert Lectures, and Reviewers
2020 Fall Studio Topic: Commercial Human Spaceflight Expeditions-CHASE [Sec.8 Outline]
Mandatory Real Time Midterm and Final Presentations – Midterms Sep28, Finals Dec14
M.Thangavelu, Conductor

1. Introduction
ASTE527 is all about creativity and ideation, the conception, birth or the origination of ideas. The area of investigation is complex space systems. Participants are taught to quickly create concepts and present them before a group of professionals and academics for review and feedback.

The core of the instruction is all about providing inspiration to create new products and processes. It is done primarily through engaging the studio with a variety of presentations by visiting guest lecturers who have created and continue to create innovative products. Debate and discussion are key to development and refinement of ideas. Graduate students from all disciplines of engineering, architecture, medicine and the law are encouraged to apply and participate in the studio. A basic appreciation of the sciences, space systems and the space environment are useful prerequisites for this course.

2. Course Mechanics – ONLINE USC DEN WebEx
This highly interdisciplinary course is all about the adumbration or early formulation and articulation of creative ideas. It is also about visionary and imaginative speculation; visualizing “big picture” future applications for space technology and space activity. Inductive and analogous processes, synthetic thinking, associative logic, metaphorical models and other system architecting tools are employed to quickly create alternative "concept architectures", which in essence, are rudimentary but global ideas or visions of a project. Besides presenting poignant, project specific, interdisciplinary scientific concepts and engineering theory behind space system architectures, participants will be introduced to architectural concept generation theory, methods, form finding processes, visualization and presentation techniques followed by a unique, hands-on studio approach that allows the participants to realize their own concept architecture project in a rapid manner.

Participants work on both a small individual mini project and a larger team project. These concept architectures are then presented to an expert panel of faculty, agency and industry professionals for feedback and discussion. The studio also feature lectures on relevant topics by visiting professionals who are experts in the field.

For the individual mini-project(due at mid-term) participants are free to explore creative, new ideas of their own choice as well for space transport and human and robotic facilities in space. Options for concept architectures include but are not limited to:
• Space Transportation systems and their evolution
• Orbital debris mitigation systems
• On orbit assembly of large scientific platforms, modular stations/vehicles
• Solar Power Satellites
• Innovative communication satellite architectures
• Solar System Exploration strategies and human expeditions to the Moon, Mars and beyond
• Space Tourism and Adventures
Recreational vehicles/facilities, advertising in space and other innovative ideas

Fast-paced topic oriented studio. Strongly advise students to pay close attention to all class meetings. Active participation and feedback during visiting lectures and coordination proceedings recommended. Selected projects may be presented at various professional meetings and conferences.

3. Final Design Team Project Focus:
Using current NASA studies and ongoing as well as proposed space mission projects as baseline, studio participants will jointly create alternative system architectures (both robotic and human) for a variety of missions including lunar exploration and interplanetary mission technology development and verification. The Team Project will focus on a range of topics of interest to the space community and our nation including human and robotic exploration, commercial space activities and planetary defense. Merits and limitations of different architectures are discussed and documented.
Past team projects have included:
- Lunar Mission Concepts
- Mars Exploration
- Solar Power Satellites
- Visions for Human Space Activity
- International Space Station
- Planetary Defense Architectures

Past presentation materials may be accessed at: http://denecs.usc.edu/hosted/ASTE/527_20111/

4. Grades
Midterm Individual Concept Architecture Presentation – 20%
Final Team Project Presentation – 60%
Class Participation – 20%

All students must present their work in real time, either in the studio or via a reliable broadband link through USC DEN service to a panel of reviewers for evaluation and feedback on which the grades are based entirely.

5. Mid-term and Final Presentation Dates and Venue – ONLINE over USC DEN WebEx
Midterm Sep 28, Finals Dec 14. Presentations will happen during regular studio hours, 6:40-9:20pm, ONLINE. DEN students will present projects in real time via USC DEN WebEx service.

6. Textbook
- Space Systems Concepts Creation Class Notes - M. Thangavelu

7. Recommended References
- NASA Man Systems Integration Standards(MSIS STD3000/3001)
- Out Of This World:...Space Architecture, AIAA (2009), Howe, A.S etal - ISBN-10: 1563479826
• Space Exploration: Mission Engineering, Woodcock G.(2011)
• Space Habitats and Habitability: Designing for Isolated and Confined Environments on Earth and in Space (Space and Society) by Sandra Häuplik-Meusburger, Sheryl Bishop, Springer2021
• Current journals, topical magazines and space related periodicals are recommended

Textbooks prescribed for ASTE Astronautical Engineering and SAE System Architecting are useful. Class handouts will include pertinent material on Space Exploration, ranging from history of Space Exploration to programs and current thinking on the subject.

8. Fall 2020 Team Project Topic – Commercial Human Spaceflight Expeditions(CHASE)

NASA has been clearly directed by the current US administration to continue the direction established by the previous administration to return to the Moon and charged with an aggressive Mars forward agenda. Commercial space sector expertise and international involvement are at the core of this new strategy, aimed at economic viability and agility in mission manifest. On March 26th, 2019, at NASA MSFC, former Vice President Pence tasked NASA with a compressed, accelerated timeline : 2024 Boots on the Moon. See speech here : https://www.space.com/us-astronauts-moon-return-by-2024.html

On May 14th 2019, former NASA Administrator Jim Bridenstine announced the new program named Artemis, after the twin sister of Apollo in Greek mythology. The new US administration has reaffirmed prior administration goals and is advancing technologies including nuclear propulsion and power. The Artemis Accords are being deliberated in the international arena and Commercial Human Spaceflight has taken on more responsibilities. Space Tourism has come of age as the cost of space transportation continues to decline and become more affordable, thanks to the innovations, creativity and agility in the homgrown private space sector. As NASA charts a new path, being customer rather than owner of hardware and operations, the agency has officially opened the doors to Space Tourism. The agency now has the mandate to host tourists onboard the International Space Station. Several private space companies have been evolving their own projects to offer civilians (those who are not trained as astronauts) experiences ranging from stays in Earth based simulators, stratospheric flights, as well as suborbital, free-fall experiences and longer Earth and cislunar orbital flights. Commerce is the lifeblood of modern civilization and it enhances global collaboration and peaceful pursuits among nations. Commercial space sector is ramping up leading-edge technologies to support innovative missions to make humanity a truly space faring species. The 2021 Fall studio will look at creative ideas for human spaceflight in the near term, including Space Tourism in its various forms and proposed missions. Alternative progressive technologies and self-sustainable narratives for GATEWAY and ARTEMIS projects that have the backing and blessings of the new US administration are also sought. Welcome to USC Fall 2021 ASTE527 Commercial Human Spaceflight Expeditions(CHASE).

Instructor Bio

Madhu Thangavelu is the conductor of the ASTE527 graduate Space Exploration Architectures Concept Synthesis Studio in the Department of Astronautical Engineering within the Viterbi School of Engineering and he is also a graduate thesis adviser and teaches the Extreme Environments Seminar in the School of Architecture at USC. He holds degrees in both engineering and architecture and has contributed
extensively to concepts in space architecture, especially dealing with extraterrestrial development. He is the author or co-author of over 50 technical papers in space architecture, lunar base design and human factors, and co-author of the book The Moon: Resources, Future Development and Settlement (1999) published by John Wiley & Sons and second edition by Springer/Praxis in 2007. He is the invited author of the chapter "Living on the Moon" in the Encyclopedia of Aerospace Engineering, a major reference work published by John Wiley & Sons in 2010 and the on-line second edition updated in 2012. He is a member of the USC team that won the consecutive NASA NIAC Phase I award in 2011 and Phase II award in 2012. He is on the faculty of the International Space University, an international organization that educates promising leaders and space professionals in an interdisciplinary, intercultural, international environment.

Recent News and Studio Publications:
2012 – NASA NIAC Award USC Engg. and USC Architecture, https://arch.usc.edu/topics/nasa-research
2018 - Buzz Aldrin To Steph Curry: 'Go Ask The Russians' If We Landed On The Moon – CBS Los Angeles (cbslocal.com)
2019 – NBC Mars Interview - [Learning From Missions to Mars.mp4](https://www.youtube.com/watch?v=mp4) - Google Drive
2020 – [PDF] IAC2020 USC ARTEMIS MAXIM Tribute to Apollo-Final (researchgate.net)

Tentative Schedule for ASTE 527 Fall 2020 – ONLINE via USC DEN WebEx

<table>
<thead>
<tr>
<th>Wk</th>
<th>Date</th>
<th>Topic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wk1</td>
<td>Aug 24</td>
<td>Introduction</td>
<td>Student Introduction, Scope and Assignment</td>
</tr>
<tr>
<td>Wk2</td>
<td>Aug 31</td>
<td>Library Research</td>
<td>No meeting</td>
</tr>
<tr>
<td>Wk3</td>
<td>Sep 07</td>
<td>VL-1</td>
<td>Visiting Lecture</td>
</tr>
<tr>
<td>Wk4</td>
<td>Sep 14</td>
<td>Alternate Ideas</td>
<td>present alternative ideas</td>
</tr>
<tr>
<td>Wk5</td>
<td>Sep 21</td>
<td>Concept Development</td>
<td>Dry Run</td>
</tr>
<tr>
<td>Wk6</td>
<td>Sep 28</td>
<td>Midterm</td>
<td>Reviewers present – Mandatory real time</td>
</tr>
<tr>
<td>Wk7</td>
<td>Oct 05</td>
<td>Team project</td>
<td>Intro and Scope</td>
</tr>
<tr>
<td>Wk8</td>
<td>Oct 12</td>
<td>Library Research</td>
<td>No meeting</td>
</tr>
<tr>
<td>Wk9</td>
<td>Oct 19</td>
<td>VL-2</td>
<td>Visiting Lecture</td>
</tr>
<tr>
<td>Wk10</td>
<td>Oct 26</td>
<td>VL-3</td>
<td>Visiting Lecture</td>
</tr>
<tr>
<td>Wk11</td>
<td>Nov 02</td>
<td>Concept Development</td>
<td>Alternative sections and order</td>
</tr>
<tr>
<td>Wk12</td>
<td>Nov 09</td>
<td>VL-4</td>
<td>Visiting Lecture</td>
</tr>
<tr>
<td>Wk13</td>
<td>Nov 16</td>
<td>Coordination</td>
<td>Discussion – Title, Template, Changes</td>
</tr>
<tr>
<td>Wk14</td>
<td>Nov 24</td>
<td>No Meeting</td>
<td>Thanksgiving</td>
</tr>
<tr>
<td>Wk15</td>
<td>Nov 30</td>
<td>Coordination</td>
<td>Dry Run</td>
</tr>
<tr>
<td>Wk16</td>
<td>Dec 07</td>
<td>No meeting</td>
<td>Study Day</td>
</tr>
<tr>
<td>Wk17</td>
<td>Dec 14</td>
<td>Finals</td>
<td>Reviewers present – Mandatory real time</td>
</tr>
</tbody>
</table>

Queries? Contact instructor at: mthangav@usc.edu