SSCI 581 (35691), Concepts for Spatial Thinking

Syllabus

Units: 4

Term — Day — Time: Summer 2021;
Tues/Thurs 9:00-10:50 am PT

Location: Online; Zoom links available on the course
Blackboard

Co-Instructor: Leilei Duan, PhD
Office: AHF B55
Regular Office Hours: Tuesdays 8-9 am and Thur 1-2 pm PT.
Also available by appointment via email.
Contact Info: leileidu@usc.edu, 213-740-6532

Co-Instructor: Laura C Loyola, PhD
Office: AHF B55A
Regular Office Hours: Tues 11 am-12 pm and Wed 2-3 pm
PT. Also available most days and times by appointment via
email.
Contact Info: loyola@usc.edu, 213-740-5612;
323-457-3504 (remote office)

Library Help: Andy Rutkowski
Office: VKC 36B
Office Hours: Tuesdays 10 a.m.-12 p.m. PT
Contact Info: arutkows@usc.edu

IT Help: Richard Tsung
Office: AHF 146
Office Hours: By appointment
Contact Info: ctsung@usc.edu, 213-821-4415 (office)
Course Scope and Purpose

SSCI 581: Concepts for Spatial Thinking, is an introduction to geographic information science and spatial reasoning. Spatial is an enabling discipline. Thus, the course domain is inherently comprehensive, multi-disciplinary, collaborative, and pertinent to problem solving in a wide range of academic and professional fields.

The course is designed to serve many audiences within the Spatial Sciences Institute and across the USC campus. It is the foundational spatial science course for five distance-learning programs¹ and three residential programs². To serve a range of academic objectives, students are provided with a variety of options in course topics and assignments so they can align with their own academic and professional goals.

The course is also designed for any student who wishes to improve their GIS skills and understand the concepts underlying GIS analysis. Students will leave the course understanding the theoretical underpinnings of the field of spatial science.

Fundamentals of GIS – The course provides a core foundation in the evolving field of geographic information science. The course explores geographic information science and its applicability to a variety of fields, such as transportation, human security, geospatial intelligence, spatial data science, public health, economics, land use planning, geodesign, environmental science and management, spatial science, archaeology, and the humanities.

The ArcGIS Ecosystem – Esri’s ArcGIS suite is a powerful, industry-standard software that can be used to analyze spatial questions and visualize the outcomes. All students in this course learn how to independently use ArcGIS to solve real-world spatial questions.

Spatial Data – The ability to understand and analyze data sets is an essential component of spatial thinking, reasoning, and application. Students will investigate fundamental geospatial datasets and attain the knowledge and skills necessary for processing, interpreting, and analyzing GIS data. Students will also learn how to find, clean, and merge data sets and vet them for quality.

Spatial Thinking – Location is critically important in contemporary society and a spatial perspective can be applied to nearly every topic area. The course will use readings, discussions, and a variety of case studies to demonstrate the importance of spatial thinking in describing, analyzing, modeling, and visualizing the world, and how one can cultivate the habit of thinking spatially.

Geodesy – Geodesy is the branch of science concerned with the size and shape of the Earth and determining precise locations on its surface. This includes geodetic datums, geoids, coordinate systems, and map projections. Understanding what geodesy is and how it underlies the

¹The M.S. in Geographic Information Science & Technology (GIST), the M.S. in Human Security and Geospatial Intelligence, the GIST and Geospatial Intelligence Graduate Certificates, and the GeoHealth track in the Keck School of Medicine’s Master of Public Health program
²The M.S. in Spatial Data Science, the M.S. in Spatial Economics and Data Analysis, and the M.S. in Transportation Systems Management
successful deployment and use of spatial technologies separates a novice GIS practitioner with one who is more advanced.

Maps – Maps communicate the findings of spatial analysis and have been employed throughout history to make sense of geographic concepts. The course will review past, present, and future map use, and explore how maps depict and transmit geographic knowledge in the digital age. Students will gain expertise in designing clear, communicative maps that meet professional standards.

At the graduate level, students are responsible for their own learning. The instructor’s role is as a guide on the path of academic exploration, and students will be rewarded through active engagement with both the material and with their fellow classmates. The challenge for the instructors is to provide a robust, challenging, and stimulating academic experience within the broader milieu of the digital era.

All course materials will be organized through the Blackboard Course Management System. Core theoretical concepts will be presented via lectures, videos, and assigned readings, and augmented with active learning exercises. Written assignments will give students the opportunity to analyze and apply the concepts and theories learned from the readings. Projects will primarily use Esri’s ArcGIS Pro.

Learning Outcomes

On completion of this course, students should be able to:

- Summarize, interpret, and utilize fundamental spatial concepts such as orientation, projections and transformations, interpolation, dispersion, and pattern.
- Examine how maps have been used throughout history to organize and empower different groups of people and anticipate the evolution of maps in the future.
- Illustrate the role and importance of geodetic datums, geoids, coordinate systems, and map projections for identifying the position and the location of places, people, and features on the Earth’s surface when conducting spatial analysis.
- Describe the spatial analysis, modeling, and visualization tools included in geographic information systems and how geospatial technologies can advance knowledge creation and communication across a variety of academic disciplines and professional fields.
- Examine, analyze, and manipulate core geospatial datasets from a wide range of fields to answer original questions for real-world decision support.
- Apply appropriate academic protocol with respect to research and writing.
- Apply spatial thinking and cartographic principles in the mapping and visualization of spatial data.

Students may vary in their competency levels on these abilities. You can expect to acquire these abilities only if you honor all course policies, attend classes regularly, complete all assigned work in good faith and on time, and meet all other course expectations of you as a student.

Prerequisite(s): None
Co-Requisite(s): None
Recommended Preparation: None

Class Conduct

Harassment, sexual misconduct, interpersonal violence, and stalking are not tolerated by the university. All faculty and most staff are considered Responsible Employees by the university and must forward all information they receive about these types of situations to the Title IX Coordinator. The Title IX Coordinator is responsible for assisting students with supportive accommodations, including academic accommodations, as well as investigating these incidents if the reporting student wants an investigation. The Title IX office is also responsible for coordinating supportive measures for transgender and nonbinary students such as faculty notifications, and more. If you need supportive accommodations you may contact the Title IX Coordinator directly (titleix@usc.edu or 213-821-8298) without sharing any personal information with me. If you would like to speak with a confidential counselor, Relationship and Sexual Violence Prevention Services (RSVP) provides 24/7 confidential support for students (213-740-9355 (WELL); press 0 after hours).

Course Structure

The course is taught in a hybrid modality with class meetings split between presentations and discussions of the assigned readings and any questions and related topics that arise from the readings. Students can attend class sessions synchronously or participate in the course asynchronously. Additional readings will be assigned to expand on the text (GIS Fundamentals: A First Text on Geographic Information Systems, 6th ed) when needed. The course will generally unfold on a biweekly basis. When possible, assignments will be given in advance, but usually they will be posted on or before Mondays. Technical work throughout the semester focuses on a variety of use cases and is presented via projects utilizing materials and data provided by the instructor. These exercises allow students to demonstrate their ability to apply spatial concepts and tools in an appropriate, informed manner.

Workload – This is a four credit, one semester course. Students should expect to dedicate 10-15 hours per week to this course.

Technological and Communication Requirements

ArcGIS Pro is provided online via the SSI Server (via a virtual machine); hence, students do not need to install it on their own computer. Instead, every student must have the following technology requirements:

- A computer with a fast internet connection
- A functional webcam and a microphone for use whenever a presentation or meeting is scheduled
- An up-to-date-web browser to access the SSI server

If a student does not have access to any of these, please speak with the instructors at the start of the semester. And see the USC ITS Student Toolkit here: https://keepteaching.usc.edu/students/student-toolkit/
SSI Server and Tech Support – This course utilizes the SSI Server, which is a virtual desktop that allows access to different types of professional software. If students are unable to connect to the server or experience technical issues, they should send an email (via their USC account) to SSI Tech Support at spatial_support@usc.edu, making sure to copy (cc) the instructor on the email. Assignment specific questions should be directed to the instructors.

Communications – All materials will be provided via Blackboard. This allows you to engage in reading and class preparation assignments both ahead of synchronous sessions or asynchronously. All assignments will be submitted via Blackboard. In addition to email about time-sensitive topics, announcements will be posted on the Blackboard Announcement page. It is each student’s responsibility to stay informed as to course activities and updates. All students are in charge of ensuring that email sent from the USC Blackboard account and the instructors is not directed to junk mail.

The instructors are regularly online and will respond to student emails quickly. The instructors will endeavor to respond to email within 36 hours of receipt, aiming for no more than a 72-hour delay. An announcement will be posted in the rare instance when an instructor is offline for 72 hours or more.

Required Readings and Supplementary Materials

The required textbooks for this course are:

Supplementary readings will be assigned from various sources including but not limited to:

Description and Assessment of Assignments

There are different types of assignments, which are described in detail in the instructions posted to Blackboard.

Resume Assignments – 2 worth a total of 5 points. All students are required to post and maintain a public resume, biography, and headshot on the SSI Student Community Blackboard site. Unless a student opts out, their resume will be included in the Spatial Sciences Institute Graduate Programs Resume Book, which is used to promote the program and highlight student skills, experiences, and professional aspirations. An updated resume will be submitted at the end of the course of study.

Projects – 5 worth a total of 45 points. The projects will be the major tool used to evaluate your learning in this course. The projects will be linked to course Modules. In support of these projects, students will complete some ArcGIS tutorials so that they are familiarized with the analytical capabilities of ArcGIS Pro and apply their proficiencies to problem-solving scenarios. Students will gain GIS skills from completing portions of the Law and Collins’ Getting to Know ArcGIS Pro workbook and Esri web courses. In this, they will solve basic research questions, while reading, thinking, and writing about GIS projects.

Reading and Research Discussions – 5 worth a total of 20 points. These assignments call on students to critically analyze required readings, identify relevant case studies employing the methodologies and concepts we cover in class, and to discuss them with the instructor and their classmates during synchronous meetings and/or online discussion forums via Blackboard. Critical thinking questions provide students an opportunity to apply their competencies to exploratory, open-ended scenarios and support spatial thinking problem solving.

Mid-Term Exam – 1 worth of a total of 10 points. The mid-term will cover material learned in the first half of the term. It may be mixed format and may consist of multiple choice, short answer, and simple problem questions.

Final Exam – 1 worth a total of 20 points. The final exam will cover material learned over the duration of the term. It may be mixed format and may consist of multiple choice, short answer, and simple problem questions.

Grading Breakdown

Careful planning and a serious, consistent commitment will be required for students to successfully navigate the deliverables in this and other SSCI courses. The table below summarizes the SSCI 581 course assignments and their point distribution:
Assessment Table

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Number</th>
<th>Points Each</th>
<th>Total Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resume Assignment 1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Project 1</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Projects 2-5</td>
<td>4</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Reading and Research Discussions</td>
<td>5</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Resume Assignment 2</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mid-Term</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Final</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>

Assignment Submission Policy

Assignments must be submitted via Blackboard by the due dates specified in the Course Schedule. Attention to on-time assignment submission is essential. The instructors will aim to return feedback before the next assignment is due.

Strict penalties apply for late assignments as follows:

- All assignments will be penalized 2 points up to four days late. No points will be given for submissions more than four days late.
- Additionally, no written work will be accepted for grading after 5 p.m. PT on the last day of classes.

Course Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Assignments & Readings</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Module 1: Introduction to Spatial Thinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Week 1 5/20</td>
<td>Introduction to Course and GIS</td>
<td>Reading and Research Discussion (RRD) 1; Resume Assignment 1; Project 1; Schuurman, Ch. 1</td>
</tr>
<tr>
<td></td>
<td>Fundamental Concepts</td>
<td>Fundamental Concepts</td>
<td>Warf and Sui</td>
</tr>
<tr>
<td>5/27</td>
<td>Spatial Data Models</td>
<td>Spatial Data Models</td>
<td>Bolstad, Ch. 2</td>
</tr>
<tr>
<td>Week</td>
<td>Topic</td>
<td>Assignments & Readings</td>
<td>Deliverables/Due Dates</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Week 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/1*</td>
<td>What’s Special About Spatial?</td>
<td>Logan</td>
<td></td>
</tr>
<tr>
<td>6/3</td>
<td>Scale</td>
<td>Biehl et al.; Sayre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 2: The Spatial Value Proposition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/8</td>
<td>The Power of Maps and Critical GIS</td>
<td>Harley; Pavlovskaya</td>
<td></td>
</tr>
<tr>
<td>6/10</td>
<td>Transportation</td>
<td>Bolstad, Ch. 7, pp. 299, 323-324; Zhang et al.</td>
<td>RRD 1 (synchronously, in class; asynchronously, before and after class session)</td>
</tr>
<tr>
<td>Week 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/15</td>
<td>Land Use and Population</td>
<td>RRD2; Bolstad, Ch. 3, 133-135; Leyk et al.</td>
<td>Project 1b – Monday, 6/14</td>
</tr>
<tr>
<td>6/17</td>
<td>Environmental Data and the NWM</td>
<td>Bolstad, Ch. 7, pp. 305-323</td>
<td></td>
</tr>
<tr>
<td>Module 3: Spatial Data Handling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/22</td>
<td>Geodesy, Datums, and Geographic Coordinate Systems</td>
<td>Project 2; Bolstad, Ch. 3, 87-115</td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Topic</td>
<td>Assignments & Readings</td>
<td>Deliverables/Due Dates</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6/24</td>
<td>Map Projections and Types of Maps</td>
<td>Bolstad, Ch. 3, 116-133; Kimerling, Chs. 7-8 (skim)</td>
<td>RRD 2 (synchronously, in class; asynchronously, before and after class session)</td>
</tr>
<tr>
<td></td>
<td>An introduction to the effects of projecting the three-dimensional world and a discussion of dynamic mapping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 7 6/29</td>
<td>Projected Coordinate Systems and Transformations</td>
<td>Bolstad, Ch. 4, pp. 168-180</td>
<td>Project 2 — Monday, 6/29</td>
</tr>
<tr>
<td>7/1</td>
<td>Attribute Tables and Spatial Databases</td>
<td>RRD3; Bolstad, Ch. 8</td>
<td>Mid-Term Exam (asynchronous): Two-hour window of student’s choosing from Weds. 6/30 9am PT – Thurs. 7/1 9am PT</td>
</tr>
<tr>
<td></td>
<td>The importance of attribute information associated with coordinates and options for storing spatial data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 8 7/6*</td>
<td>Aerial and Satellite Imagery</td>
<td>Bolstad, Ch. 6</td>
<td></td>
</tr>
<tr>
<td>Monday, 7/5 is a university holiday</td>
<td>Introduction to passive and active remote sensing systems and the data they produce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/8</td>
<td>Global Navigation Satellite Systems</td>
<td>Project 3 Bolstad, Ch. 5</td>
<td>RRD 3 (synchronously, in class; asynchronously, before and after class session)</td>
</tr>
<tr>
<td></td>
<td>Introduction to geolocation systems and uses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 9 7/13</td>
<td>Spatial Data Quality, Metadata; Volunteered and Crowdsourced Geographic Information</td>
<td>Bolstad, Ch. 4, pp. 188-191; Ch. 7, pp. 303-304; Ch. 14; van Oort Senaratne et al.; Verplanke et al.</td>
<td></td>
</tr>
<tr>
<td>7/15</td>
<td>Cartography & Modern Mapmaking</td>
<td>Bolstad, Ch. 4, 147-156; Kimerling, Ch. 6; Clarke et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Best practices for creating finished mapping products; Cartographic principles and methods for visualizing spatial data online</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module 4: Turning Spatial Data into Actionable Information
<table>
<thead>
<tr>
<th>Week 10</th>
<th>Topic</th>
<th>Assignments & Readings</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/20</td>
<td>Introduction to Spatial Analysis</td>
<td>Project 4; RRD 4; Bolstad, Ch. 9</td>
<td>Project 3 – Monday 7/19</td>
</tr>
<tr>
<td>7/22</td>
<td>Introduction to Raster Analysis</td>
<td>Bolstad, Ch. 10; Bamutaze</td>
<td></td>
</tr>
<tr>
<td>Week 11</td>
<td>Terrain Analysis and Geospatial Intelligence</td>
<td>Bolstad, Chs. 11, 13 pp. 601-602</td>
<td></td>
</tr>
<tr>
<td>7/27</td>
<td>Spatial Estimation and Interpolation</td>
<td>Bolstad, Ch. 12, 521-535</td>
<td></td>
</tr>
<tr>
<td>7/29</td>
<td>Introduction to 3D Modeling and Automation Processes</td>
<td>Resume Assignment 2 Project 5 Kanevski</td>
<td>Project 4 – Monday, 8/2</td>
</tr>
<tr>
<td>Week 12</td>
<td>Spatial Modeling</td>
<td>RRD5 Bolstad, Ch. 13</td>
<td></td>
</tr>
<tr>
<td>8/3</td>
<td>GIS Customization and Cloud Services</td>
<td>Bolstad, Ch. 7, pg. 300 Steiniger & Hunter</td>
<td>Resume Assignment 2 – Monday 8/9; RRD5 (synchronously, in class; asynchronously, before and after class session)</td>
</tr>
<tr>
<td>8/5</td>
<td>Looking Forward for GIS and Exam Review</td>
<td>Bodenhamer Miller & Goodchild</td>
<td>Project 5 – FRIDAY, 8/13; Final Exam (asynchronous)</td>
</tr>
</tbody>
</table>

Module 5: Future of GI Science, Systems and Services

<table>
<thead>
<tr>
<th>Week 13</th>
<th>Topic</th>
<th>Assignments & Readings</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/10</td>
<td>GIS Customization and Cloud Services</td>
<td>Bolstad, Ch. 7, pg. 300 Steiniger & Hunter</td>
<td>Resume Assignment 2 – Monday 8/9; RRD5 (synchronously, in class; asynchronously, before and after class session)</td>
</tr>
<tr>
<td>8/12</td>
<td>Looking Forward for GIS and Exam Review</td>
<td>Bodenhamer Miller & Goodchild</td>
<td>Project 5 – FRIDAY, 8/13; Final Exam (asynchronous)</td>
</tr>
</tbody>
</table>
Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards” policy.usc.edu/scampus-part-b. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

Support Systems

Counseling and Mental Health – (213) 740-9355 – 24/7 on call engemannshc.usc.edu/counseling
Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention.

National Suicide Prevention Lifeline – 1 (800) 273-8255 – 24/7 on call www.suicidepreventionlifeline.org
Free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week.

Relationship and Sexual Violence Prevention Services (RSVP) – (213) 740-9355(WELL), press “0” after hours – 24/7 on call studenthealth.usc.edu/sexual-assault
Free and confidential therapy services, workshops, and training for situations related to gender-based harm.

Office of Equity and Diversity (OED) – (213) 740-5086 | Title IX Compliance – (213) 821-8298 equity.usc.edu, titleix.usc.edu
Information about how to get help or help someone affected by harassment or discrimination, rights of protected classes, reporting options, and additional resources for students, faculty, staff, visitors, and applicants.

Reporting Incidents of Bias or Harassment – (213) 740-5086 or (213) 821-8298 usc-advocate.symplicity.com/care_report
Avenue to report incidents of bias, hate crimes, and microaggressions to the Office of Equity and Diversity | Title IX for appropriate investigation, supportive measures, and response.

The Office of Disability Services and Programs – (213) 740-0776 dsp.usc.edu
Support and accommodations for students with disabilities. Services include assistance in providing readers/notetakers/interpreters, special accommodations for test taking needs, assistance with architectural barriers, assistive technology, and support for individual needs.
USC Campus Support and Intervention – (213) 821-4710
campussupport.usc.edu
Assists students and families in resolving complex personal, financial, and academic issues adversely affecting their success as a student.

Diversity at USC – (213) 740-2101
diversity.usc.edu
Information on events, programs and training, the Provost’s Diversity and Inclusion Council, Diversity Liaisons for each academic school, chronology, participation, and various resources for students.

USC Emergency - UPC: (213) 740-4321, HSC: (323) 442-1000 – 24/7 on call
dps.usc.edu, emergency.usc.edu
Emergency assistance and avenue to report a crime. Latest updates regarding safety, including ways in which instruction will be continued if an officially declared emergency makes travel to campus infeasible.

USC Department of Public Safety – - UPC: (213) 740-6000, HSC: (323) 442-120 – 24/7 on call
dps.usc.edu
Non-emergency assistance or information.

Resources for Online Students
The Course Blackboard page and the GIST Community Blackboard page have many resources available for distance students enrolled in our graduate programs. In addition, all registered students can access electronic library resources through the link https://libraries.usc.edu/. Also, the USC Libraries have many important resources available for distance students through the link: https://libraries.usc.edu/faculty-students/distance-learners. These include instructional videos, remote access to university resources, and other key contact information for distance students.