GENERAL INFORMATION

Class Meetings: This class is offered online, but does not have an asynchronous attendance option. Synchronous class meetings will be held via Zoom on Monday through Thursday from 9-11:30am. You must attend each lecture. Quizzes will be given each week during scheduled class and/or discussion section times.

COURSE PERSONNEL

Instructor: Dr. Jasmine Bryant
 Office Hours: T, Th 11:30am to noon (immediately after class, additional appointments may be requested by email)
 Contact Info: bryantja@usc.edu (preferred contact method)

Lab Instructor: Dr. Catherine Skibo
 Office Hours: See laboratory Blackboard site for times/meeting information
 Contact Info: (213) 740-8265, skibo@usc.edu

Course Coordinator: Paperwork may emailed as a PDF
 Electronic Office Hours: MW 1:30-3pm, emailed questions answered at this time
 Contact Info: coord105@chemmail.usc.edu

Teaching assistant contact information and office hours times/location can be found on the course Blackboard site.

COURSE DESCRIPTION

The purpose of CHEM 105a is to introduce the basic chemical principles that underlie all of the molecular sciences (from materials and nanoscience to medicine and the machinery of biology). It will introduce good lab practice and how to make decisions based on sound data. Topics covered include the structure and underlying principles of the periodic table, chemical bonding, reaction stoichiometry, properties of solutions and gases, and thermochemistry. After this course students will be both better prepared for continuing studies and have an understanding of molecular principles relevant to everyday life.
LEARNING OBJECTIVES

Students who successfully complete CHEM 105a will be able to:

- Explain the chemical and physical behavior of matter based on modern atomic theory, quantum mechanics, and the resulting atomic periodicity.
- Describe the formation and energetics of chemical bonds based on electrostatic forces.
- Describe and predict the structure of covalent and ionic compounds.
- Explain the properties of chemical molecules using bonding models, including hybridization and molecular orbital theory, with the understanding of their limitations.
- Describe the physical and chemical changes taking place in chemical reactions at both the particulate and macroscopic levels.
- Recognize and classify acid-base, precipitation, and oxidation-reduction reactions.
- Use balanced chemical equations to determine quantities of reactants and products.
- Explain the behavior of gas phase chemical systems at the particulate and macroscopic level using ideal gas behavior.
- Explain the First and Second Laws of Thermodynamics in relation to chemical systems.
- Describe the energetics of a chemical system using the state function enthalpy.
- Explain macroscopic properties based on intermolecular forces within the chemical system.
- Describe the structure and properties of the liquid and solid states, as well as phase changes, at the particulate and macroscopic levels.
- Explain the chemical, physical, and thermodynamic properties of solutions at the particulate and macroscopic level.
- Clearly define a problem and develop solutions for that problem including the use of central and auxiliary equations and conversion factors.
- Apply the concepts listed above to explain and interpret empirical observations, particularly in the laboratory portion of the course.
- Prepare laboratory reports that include experimental procedures, data analysis, and scientific writing.

COURSE MATERIALS

Required

Textbook: CHOOSE ONE

- Chemistry: A Molecular Approach (5th edition) by Tro (package available in USC Bookstore includes for free the eText and Mastering Chemistry (MC not required); also available on Amazon).
- Chemistry: Atoms First (2e), OpenStax (https://openstax.org/details/books/chemistry-atoms-first-2e)

Lab Manual: Chem 105a Laboratory Manual (purchasing information available once course begins)

Calculator (scientific)
Optional
General Chemistry Study Guide (Volume 1) by Bryant. Available on Amazon (https://tinyurl.com/BryantChem1)
Solutions Manual for textbook
Calculations in Chemistry (2nd Edition) by Dahm (optional, recommended for students who desire additional practice with critical math and chemistry skills)

DESCRIPTION AND ASSESSMENT OF ASSIGNMENTS
Assignments in the course include quizzes, in-class work, laboratory reports, homework, and a final exam.

Quizzes
Concept Quizzes and Surveys: Prior to each live Zoom session you will be asked to watch a few short videos and complete a related quiz (or quizzes) on Blackboard. These videos and their quizzes will help you assess your understanding of the material. There are approximately 50 videos throughout the semester. You will earn 1 point for answering each question correctly, with multiple attempts allowed. Your top 45 scores will count toward your final grade. You will not earn points for submitting answers after the deadline. Please carefully note all due dates and times (found in Blackboard). There are no make-ups and no late submissions.
Weekly Quizzes: There will be two quizzes each week (except Week 1). These will test your understanding of the material covered in the class to that point. Weekly quizzes are graded on accuracy and you have one timed attempt at the quiz. Weekly quizzes must be your own individual effort – no consultation with others or the internet are allowed. You are allowed to use your notes and/or textbook. No make-up quizzes will be given. Your lowest quiz grade will be dropped. A missed quiz will be counted as a zero towards your final grade and this will be the only score dropped.

In-Class Work
Live Zoom sessions will be used to reinforce the pre-lecture video content and give students practice solving problems. In-class work will be assigned and collected that day. Some in-class poll questions will be answered via PollEverywhere. Poll questions are graded based on participation only and are used to gauge your understanding of the material at that moment.

Laboratory Reports
Lab meets synchronously three times per week. See the lab Blackboard site for information about lab requirements.

Homework
Note Pages: At the end of each unit you will be required to turn in a single notes page containing important equations, key ideas and terms, and graphics.

Final Exam
A cumulative final exam will be given on Friday, June 25 at 9am.
Grading Breakdown

Your grade will be determined according to the following distribution:

- Weekly Quizzes (9) - 36%
- In-Class Work - 7%
- Concept Quizzes (pre-lecture video quizzes) - 5%
- Homework - 8%
- Laboratory - 29%
- Final Exam - 15%

To receive a passing grade, satisfactory work must be done in both lab and the lecture portions of the course. You are encouraged to check your grades on the Chem 105a website.

Grading Scale

Course final grades will be determined using the following scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93-100</td>
</tr>
<tr>
<td>A-</td>
<td>90-92.9</td>
</tr>
<tr>
<td>B+</td>
<td>87-89.9</td>
</tr>
<tr>
<td>B</td>
<td>83-86.9</td>
</tr>
<tr>
<td>B-</td>
<td>80-82.9</td>
</tr>
<tr>
<td>C+</td>
<td>77-79.9</td>
</tr>
<tr>
<td>C</td>
<td>73-76.9</td>
</tr>
<tr>
<td>C-</td>
<td>70-72.9</td>
</tr>
<tr>
<td>D+</td>
<td>67-69.9</td>
</tr>
<tr>
<td>D</td>
<td>63-66.9</td>
</tr>
<tr>
<td>D-</td>
<td>60-62.9</td>
</tr>
<tr>
<td>F</td>
<td>Below 60%</td>
</tr>
</tbody>
</table>

We do our best to inform you on your progress in the course by assigning an approximate letter grade at the end of the third week. This is based on your performance in the course to date. Note: this advisory letter is no guarantee of your final grade. Final grades are assigned using the grading scale, above. You are encouraged to check your scores often in Blackboard.

OTHER COURSE INFORMATION

Course Notes

Lecture notes will be available on the course website.

Office Hours

You are strongly encouraged to see any TA during their office hours, not just your own. Office hours (via Zoom) for all TAs will be posted on the class website.
Grading Timeline

Graded labs will be returned one week after they are submitted. All other graded work will be available for review on Blackboard within 48 hours of the due date with the exception of the final project, which will take more time. You can view your grades at any time on the Blackboard site.

Your Rights and Responsibilities

As a member of this course, you, the student, have the right to fair and equitable grading. Every effort will be made to grade assignments consistently, quickly, and with some amount of helpful feedback. If an error in grading is made, you are allowed to ask for a regrade of the assignment, in which we will take a more careful look at your work to make sure it was graded according to the grading rubric. In courses with multiple sections, every effort will be made to communicate and coordinate across sections to avoid large difference in grading outcomes. You further have the right to ask for help in the course. Office hours are times set aside by course instructors and teaching assistants to meet with you, individually or in groups, to answer questions and help with issues throughout the semester. While attendance at office hours is optional, you are highly encouraged to attend if you have questions or concerns. Private, one-on-one appointments are also available for more confidential discussions.

Your opportunity to learn the course material is our primary goal. We agree to help you achieve mastery of the material in exchange for your agreement to make a good-faith effort to learn it. This means that all work submitted in this course must be your own. You may not use outside sources for answers to assignments (for example, pre-lab questions, lab reports, quiz questions, homework assignments, etc.). While you may collaborate with others on laboratory work and homework assignments, work must be in your own words and reflect your good-faith efforts. It is never acceptable to use outside “tutors” or others to furnish answers for you (for example, you may not consult Chegg.com, reddit, CourseHero, etc. or hire others to complete assignments for you). If you have not done so already, please familiarize yourself with the discussion of plagiarism and other forms of academic dishonesty in SCampus in Part B, Section 11, “Behavior Violating University Standards” policy.usc.edu/scampus-part-b. See additional information in SCampus and university policies on scientific misconduct, policy.usc.edu/scientific-misconduct. The posting of course materials (including Zoom recordings, quiz questions or answers, workbook content, lab reports or quizzes, or any other course-related content) to ANY internet site is strictly prohibited. Seeking outside help during weekly quizzes is a violation of the USC Honor Code. Posting of course material is a violation of US copyright law and the USC Student Conduct Code.
COURSE SCHEDULE: A WEEKLY BREAKDOWN (TENTATIVE – CHANGES WILL BE ANNOUNCED IN LECTURE OR ON BLACKBOARD)

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1
May 24-28</td>
<td>M: Course Intro; Measurement and Units
T: Subatomic Particles; Electromagnetic Radiation & Light; The Nature of Light
W: Bohr Model; Electrons as Waves; Orbitals
Th: Electron Configuration; Periodic Table; Periodic Trends</td>
<td>Intro Surveys and Video Quizzes
Unit 1 Notes (Due 5/25)
Quiz 1 (5/26)
Unit 2 Notes (5/28)</td>
</tr>
<tr>
<td>Week 2
May 31-June 4</td>
<td>M: HOLIDAY
T: Representing Compounds; Bonding; Lewis Dot Structures
W: Electronegativity & Polarity; Resonance & Formal Charge; Octet Exceptions; Naming Compounds & Molecules
Th: Bond Energy; VSEPR
F: Polar Molecules; Drawing 3D molecules; Hybridization; Polyatomic Ions and Acids</td>
<td>Video Quizzes
Quiz 2 (6/1)
Quiz 3 (6/3)</td>
</tr>
<tr>
<td>Week 3
June 7-11</td>
<td>M: Atomic & Molar Mass; Percent Composition; Elemental Analysis
T: Balancing Reactions & Stoichiometry; Limiting Reactant & Yield
W: Solutions; Electrolytes
Th: Solubility; Net Ionic Equations; Acids & Bases; Titrations</td>
<td>Video Quizzes
Quiz 4 (6/7)
Unit 3 Notes (Due 6/8)
Quiz 5 (6/9)</td>
</tr>
<tr>
<td>Week 4
June 14-18</td>
<td>M: Oxidation States; Redox Reactions; Gas Pressure & Gas Laws
T: Gas Density & Partial Pressure; Kinetic Molecular Theory; RMS Velocity; Real Gases
W: Energy Definitions; Heat & Work; Heat Capacity; PV Work
Th: Enthalpy; Calorimetry; Hess’s Law</td>
<td>Video Quizzes
Quiz 6 (6/14)
Unit 4 Notes (Due 6/15)
Quiz 7 (6/16)
Unit 5 Notes Due (6/17)</td>
</tr>
<tr>
<td>Week 5
June 21-25</td>
<td>M: Solids, Liquids, and Gases; Intermolecular Forces; Vaporization & Vapor Pressure; Phase Changes & Phase Diagrams
T: Solutions & Solubility; Thermodynamics of Solution Formation; Gas Solubility
W: Concentration Units; Colligative Properties; Colloids
Th: Molecular Orbital Theory & Diagrams; Course Wrap-Up
F: FINAL EXAM, 9am</td>
<td>Video Quizzes
Quiz 8 (6/21)
Unit 6 Notes (Due 6/21)
Quiz 9 (6/23)
Unit 7 Notes (Due 6/24)
Unit 8 Notes (Due 6/25)</td>
</tr>
</tbody>
</table>
Statement on Academic Conduct and Support Systems

Academic Conduct:
Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards” policy.usc.edu/scampus-part-b. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, policy.usc.edu/scientific-misconduct.

Support Systems:
Counseling and Mental Health - (213) 740-9355 – 24/7 on call
studenthealth.usc.edu/counseling
Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention.

National Suicide Prevention Lifeline - 1 (800) 273-8255 – 24/7 on call
suicidepreventionlifeline.org
Free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week.

Relationship and Sexual Violence Prevention and Services (RSVP) - (213) 740-9355(WELL), press “0” after hours – 24/7 on call
studenthealth.usc.edu/sexual-assault
Free and confidential therapy services, workshops, and training for situations related to gender-based harm.

Office of Equity and Diversity (OED)- (213) 740-5086 | Title IX – (213) 821-8298
equity.usc.edu, titleix.usc.edu
Information about how to get help or help someone affected by harassment or discrimination, rights of protected classes, reporting options, and additional resources for students, faculty, staff, visitors, and applicants. The university prohibits discrimination or harassment based on the following protected characteristics: race, color, national origin, ancestry, religion, sex, gender, gender identity, gender expression, sexual orientation, age, physical disability, medical condition, mental disability, marital status, pregnancy, veteran status, genetic information, and any other characteristic which may be specified in applicable laws and governmental regulations. The university also prohibits sexual assault, non-consensual sexual contact, sexual misconduct, intimate partner violence, stalking, malicious dissuasion, retaliation, and violation of interim measures.

Reporting Incidents of Bias or Harassment - (213) 740-5086 or (213) 821-8298
usc-advocate.simplicity.com/care_report
Avenue to report incidents of bias, hate crimes, and microaggressions to the Office of Equity and Diversity |Title IX for appropriate investigation, supportive measures, and response.

The Office of Disability Services and Programs - (213) 740-0776
dsp.usc.edu
Support and accommodations for students with disabilities. Services include assistance in providing readers/notetakers/interpreters, special accommodations for test taking needs, assistance with architectural barriers, assistive technology, and support for individual needs.

USC Campus Support and Intervention - (213) 821-4710
campussupport.usc.edu

May 10, 2021
Assists students and families in resolving complex personal, financial, and academic issues adversely affecting their success as a student.

Diversity at USC - (213) 740-2101
diversity.usc.edu
Information on events, programs and training, the Provost’s Diversity and Inclusion Council, Diversity Liaisons for each academic school, chronology, participation, and various resources for students.

USC Emergency - UPC: (213) 740-4321, HSC: (323) 442-1000 – 24/7 on call
dps.usc.edu, emergency.usc.edu
Emergency assistance and avenue to report a crime. Latest updates regarding safety, including ways in which instruction will be continued if an officially declared emergency makes travel to campus infeasible.

USC Department of Public Safety - UPC: (213) 740-6000, HSC: (323) 442-120 – 24/7 on call
dps.usc.edu
Non-emergency assistance or information.