SSCI 301, Maps and Spatial Reasoning

Syllabus

Units: 4

Term Day Time: Spring 2021
Lecture: Tuesdays and Thursdays, 2-3:20 pm PT
Labs: See schedule

Location: Online

Instructor: Elisabeth Sedano, JD, PhD
Office: AHF B57C
Regular Office Hours: Mondays, 11 am-12 pm, and Thursdays, 1-2 pm PT. Also available by appointment via email.
Contact Info: sedano@usc.edu; see Contacts on class Blackboard for Zoom room.

Lab Instructor: TBD

Library Help: Andy Rutkowski
Office: VKC 36B
Office Hours: Tuesday 10 am-12 pm and Thursday 4:30-5:30 pm PT
Contact Info: arutkows@usc.edu, 213-740-6390

IT Help: Richard Tsung
Office: AHF B57E
Office Hours: By appointment
Contact Info: spatial_support@usc.edu, 213-821-4415
Course Scope and Purpose

Maps have long played a role in the production and use of geographic information. They support many different kinds and levels of spatial reasoning, from simple queries (route finding, proximity analysis) to more advanced forms of spatial analysis and modeling. An explosion in geographic information technologies over the past two decades has enabled the development of quick visualization tools such as Google Maps, sophisticated geographic information systems (GIS) such as ArcGIS and TerrSet, and many kinds of GPS-enabled sensors. Users can be found across society: social workers use GIS to track where clients live and where more social services are needed, urban planners use GIS to analyze the transformation of city spaces, landscape architects use GIS to design and track the status of their individual project sites, anthropologists use GIS to map the changing cultural patterns of a neighborhood, historians use GIS to map historical transformations across space, environmental scientists use GIS to track how natural disasters and groundwater flows interact with human-environment systems, and emergency responders use GIS to track where earthquake or hurricane survivors need assistance — to name a few.

Taken as a whole, this course provides a broad understanding (theoretical and technical) for later work with geographic information, regardless of background and/or academic interests. It introduces the geographic information technologies and spatial skills needed to map, model, and predict how physical and social phenomena develop and change. In these ways, the spatial sciences can significantly affect the way research is conducted, profoundly impact the way we understand the world, and help us to prepare plans and designs that will dramatically improve the quality of life for those whose life experiences and prospects are shaped by spatial processes.

This course is designed to serve several different student audiences given its role as a required course in the B.S. in GeoDesign, B.S. in Global Geodesign, B.S. in Environmental Studies, and the GIS and Sustainability Science, Human Security and Geospatial Intelligence, and Spatial Sciences Minors. Each student is encouraged to utilize the laboratory experience and self-directed capstone research project to explore geospatial resources and computational techniques for running basic spatial analyses and data visualization, with their own academic and professional goals in mind.

Learning Outcomes

On completion of this course, students should be able to:

- Explain how modern geographic analysis and visualization tools can be used across a variety of disciplines;
- Describe the main types of maps and discuss the issues pertaining to geographic information and the creation of maps;
- Discuss data representation methods and implications for selecting certain methods;
- Create quantitative and qualitative maps that communicate the products of spatial data analysis; and
• Apply modern mapping and GIS technologies to problem solving within diverse fields of study.

Students may vary in their competency levels on these abilities. You can expect to acquire these abilities only if you honor all course policies, attend classes regularly, complete all assigned work in good faith and on time, and meet all other course expectations of you as a student.

Prerequisite(s): None
Co-Requisite(s): None

Class Conduct

Harassment, sexual misconduct, interpersonal violence, and stalking are not tolerated by the university. All faculty and most staff are considered Responsible Employees by the university and must forward all information they receive about these types of situations to the Title IX Coordinator. The Title IX Coordinator is responsible for assisting students with supportive accommodations, including academic accommodations, as well as investigating these incidents if the reporting student wants an investigation. The Title IX office is also responsible for coordinating supportive measures for transgender and nonbinary students such as faculty notifications, and more. If you need supportive accommodations you may contact the Title IX Coordinator directly (titleix@usc.edu or 213-821-8298) without sharing any personal information with me. If you would like to speak with a confidential counselor, Relationship and Sexual Violence Prevention Services (RSVP) provides 24/7 confidential support for students (213-740-9355 (WELL); press 0 after hours).

Course Structure

This is a four-credit course comprised of lectures (two per week) and lab (one per week). The lecture sessions will discuss various aspects of cartography, spatial reasoning, and the hardware and software systems used to investigate these processes. The weekly lab meetings are designed to introduce you to the tools of scientific inquiry and to give you practical experience implementing them within the framework of the scientific method. The lecture and lab sessions complement each other to provide you with sound theoretical reasoning and the technical skills to investigate various physical and/or social processes. **It is required that you register for both the lecture and one laboratory session for this course.**

Course materials and assignments will be posted on the course Blackboard website. Your assignments will be graded and returned via Blackboard. As a registered student you will find this course available for you to access at 10 am PT on the first day of classes.

Technological and Communication Requirements

The GIS software and geospatial data required for course assignments will be accessed using computing resources provided by the Spatial Sciences Institute. No previous experience is required.
SSI Server and Tech Support – This course utilizes the SSI Server, which is a virtual desktop giving access to many different professional software programs. If you are unable to connect to the server or experience any type of technical issues, send an email using your USC account to Tech Support at spatial_support@usc.edu, making sure to copy (cc) the professor and your lab instructor on the email.

Required Readings and Supplementary Materials

The required textbooks for this course are:

The following readings will be posted to Blackboard:

Description and Assessment of Assignments

Your grade in this class will be determined on the basis of several different assessments:

Laboratory Assignments (30%): This course includes a laboratory meeting each week to develop technical competency with geospatial software platforms and analytic tools. There will be a total of ten laboratory reports due over the course of the semester. Laboratory assignments related to the final project (see Schedule below) are separate lab deliverables and scored as part of the lab.

Midterm Exams (20%): The mid-term exams may be mixed format and may consist of multiple choice, short answer, and simple problem questions. Students are expected to take the exams at the indicated times.

Final Project (20%): The final project is the capstone assignment for this course. Students will be expected to draw upon course lectures, discussions, lab assignments, readings, and outside sources to organize and deliver a self-directed study utilizing spatial data and analytical methods. The four deliverables for this project are: 1) a project proposal; 2) a draft report; 3) a final written report; and 4) an oral presentation in class.

Final Exam (20%): The final exam may be mixed format and may consist of multiple choice, short answer, and simple problem questions. Students are expected to take the exam at the indicated time.

Grading Breakdown

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Number</th>
<th>Points Each</th>
<th>Total Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Assignments</td>
<td>10</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Midterm Exams</td>
<td>2</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Final Project</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Final Exam</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100 points</td>
</tr>
</tbody>
</table>

Assignment Submission Policy

Students are expected to attend and participate in every class and lab session and to complete and upload all assignments before the deadlines detailed in the Course Schedule. All assignments will be submitted for grading via Blackboard. Late work will be assessed a penalty of 10% per day and zero grades will be assigned for work that is more than seven days late. Additionally, no work will be accepted for grading after 5 p.m. PT on the last day of classes.
Weekly Schedule

<table>
<thead>
<tr>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1: Spatial Thinking and GIS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Week 1**
1/19 | Introduction to the Course and GIS
Introduction to the class and discussion of goals, assignments, projects, technology, and the value of spatial thinking
Spatial Reasoning
A discussion of key concepts underlying spatial sciences, the scientific method, and spatial reasoning | Kimerling, Introduction; Hubbard et al. Ch. 1 | |
| 1/21 | |
| *Monday, 1/18 is a university holiday | |
| **Week 2**
1/26 | **Spatial Data Models**
An introduction to vector, raster and other data models plus data and file structures
Administration of Space and the Power of Maps
Discussion of traditional knowledge and place names, current ways space is administered and the power inherent in creating maps and its historical consequences | Harley, 2001 | Lab Report 1 – Introduction to mapping and SSI technologies : Due one week after lab |
| 1/28 | |
| **Module 2: Spatial Data Handling** | | |
| **Week 3**
2/2 | **Geodesy, Datums, and Geographic Coordinate Systems**
Overview of the concepts and terms from the geoid and spheroids to coordinate systems
Map Projections
Explanation of map projections and distortions that arise in 2D mapping of a 3D planet | Kimerling, Ch. 1; Kimerling, Ch. 3; Snyder, 2011 | Lab Report 2 – UGIS Lessons 1 - 2: Due one week after lab |
<p>| 2/4 | |</p>
<table>
<thead>
<tr>
<th>Week 4</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/9</td>
<td>Projected Coordinate Systems (PCS)</td>
<td>Discussion and explanation of projected coordinate systems</td>
<td>Lab Report 3 – UGIS Lessons 3 - 4: Due one week after lab</td>
</tr>
<tr>
<td>2/11</td>
<td>Spatial Data Management</td>
<td>introduction to the geospatial database and best practices for organizing and storing spatial data,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kimerling, Ch. 4; Zeiler & Murphy, 2010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 5*</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/16</td>
<td>Scale</td>
<td>Discuss concepts of scale in physical and social processes as well as in cartography</td>
<td>Lab Report 4 – Map Production: UGIS Lessons 5 -6: Due one week after lab</td>
</tr>
<tr>
<td>2.18</td>
<td>Global Navigation Satellite Systems</td>
<td>Overview of technologies and uses of GNSS and GPS</td>
<td></td>
</tr>
<tr>
<td>*Monday, 2/15 is a university holiday</td>
<td>Kimerling, Ch. 2, Biehl et al., 2018; Kimerling, Ch. 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 6</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/23</td>
<td>Remote Sensing</td>
<td>Overview of remote sensing technologies and uses from satellite data to UAV</td>
<td>Lab Report 5 – UGIS Lessons 7 - 8: Due one week after lab</td>
</tr>
<tr>
<td>2/25</td>
<td>Spatial Data Quality and Privacy Concerns</td>
<td>Discussion on evaluating and maintaining spatial data quality; Overview of government and private sector data and issues related to data collection and analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvey, Ch. 8, Kimerling, Ch. 10; van Oort, 2006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 7</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2</td>
<td>Geocoding; Midterm Review</td>
<td>Exploration of the problems associated with place names and street addresses; Open session for questions and review prior to Midterm #2</td>
<td>Lab Report 6 – UGIS Lesson 9: printed and online map publication: Due one week after lab</td>
</tr>
<tr>
<td>3/4</td>
<td>Midterm #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 8</td>
<td>Topic</td>
<td>Readings and Assignments</td>
<td>Deliverables/Due Dates</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| 3/9 | Midterm Review
Review Midterm | | Lab Report 7 – Working with remotely sensed data: Due one week after lab |
| 3/11 | Final Project Discussion; Fieldwork Intro
Discuss expectations, rubric, and past examples of capstone project; Intro to group fieldwork project | | |

Module 3: Turning Spatial Data Into Actionable Information

<table>
<thead>
<tr>
<th>Week 9</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
</table>
| 3/16 | Cartography and Graphic Elements
Discussion of map design principles, symbology, and cartographic technique. The use of graphics to communicate, stylize, and problem solve | Kimerling, Ch. 6; Kimerling, Ch. 7-9 (DEM section only of Ch. 9); Esri Map Book selections | No Lab Meetings |
| 3/18 | Librarian Visit
USC Librarian visits the class to discuss websites for accessing spatial data | | |
| 3/18 | | | |
| 3/23 | No Class: USC Wellness Day | | Lab Report 8 – Geocoding: Due one week after lab |
| 3/25 | Project Proposal Workshop
Students share drafts of project proposals and provide peer review | | Project Proposal: due 3/26 |

<table>
<thead>
<tr>
<th>Week 10</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
</table>
| 3/30 | Spatial Analysis of Vector Data
Introduction to proximity, network, and cluster analyses | Kimerling, Ch. 15, 16-17 (selected sections) | Lab Report 9 – Project related spatial analysis: Update due one week after lab |
| 4/1 | Spatial Analysis of Fields and Raster Data
Introduction to terrain analyses and interpolation methodologies | | |
<table>
<thead>
<tr>
<th>Week 12</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
</table>
| 4/6 | Intro to Spatial Modeling
Introduction to the use of spatial modeling techniques | Hodgson et al., 2016
Kimerling, Ch. 22 |
| 4/8 | Crowdsourcing Spatial Data
Discussion of technologies and cultural changes leading to data creation and mapping by non-professionals | Lab – Work on Final Project Draft Report (part of Final Project grade): Due Monday 4/12 |

Module 4: Looking Forward With Geospatial Data and Technologies

<table>
<thead>
<tr>
<th>Week 13</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
</table>
| 4/13 | Project Peer Review
In class peer-review of final project, including review of topic, data, and methods | Goodchild, 2007,
Reynard, 2018 |
| 4/15 | Big Data and Real-Time Data
Discussion of technologies and methods for sharing and working with large datasets and real-time data | No Lab Meetings
Self-Directed Work on Projects |

<table>
<thead>
<tr>
<th>Week 14</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
</table>
| 4/20 | Critical GIS
Consideration of what it means to engage with GIS and spatial data in an ethical, meaningful way | Kimerling, Ch. 5 |
| 4/22 | No Class: USC Wellness Day | Lab Report 10 – Project related spatial data visualization: Update due one week after lab |

<table>
<thead>
<tr>
<th>Week 15</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
</table>
| 4/27 | Final Project Presentations
Students present their final projects in class | Final Project Written Reports: Due by 4/30 5:00pm |
| 4/29 | Final Project Presentations
Students present their final projects in class | Final Examination (TBD) |
Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards” policy.usc.edu/scampus-part-b. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

Support Systems

Counseling and Mental Health – (213) 740-9355 – 24/7 on call engemannshc.usc.edu/counseling
Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention.

National Suicide Prevention Lifeline – 1 (800) 273-8255 – 24/7 on call www.suicidepreventionlifeline.org
Free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week.

Relationship and Sexual Violence Prevention Services (RSVP) – (213) 740-9355(WELL), press “0” after hours – 24/7 on call studenthealth.usc.edu/sexual-assault
Free and confidential therapy services, workshops, and training for situations related to gender-based harm.

Office of Equity and Diversity (OED) – (213) 740-5086 | Title IX Compliance – (213) 821-8298 equity.usc.edu, titleix.usc.edu
Information about how to get help or help someone affected by harassment or discrimination, rights of protected classes, reporting options, and additional resources for students, faculty, staff, visitors, and applicants.

Reporting Incidents of Bias or Harassment – (213) 740-5086 or (213) 821-8298 usc-advocate.symplicity.com/care_report
Avenue to report incidents of bias, hate crimes, and microaggressions to the Office of Equity and Diversity | Title IX for appropriate investigation, supportive measures, and response.

The Office of Disability Services and Programs – (213) 740-0776 dsp.usc.edu
Support and accommodations for students with disabilities. Services include assistance in providing readers/notetakers/interpreters, special accommodations for test taking needs, assistance with architectural barriers, assistive technology, and support for individual needs.
USC Campus Support and Intervention – (213) 821-4710
uscsa.usc.edu
Assists students and families in resolving complex personal, financial, and academic issues adversely affecting their success as a student.

Diversity at USC – (213) 740-2101
diversity.usc.edu
Information on events, programs and training, the Provost’s Diversity and Inclusion Council, Diversity Liaisons for each academic school, chronology, participation, and various resources for students.

USC Emergency - UPC: (213) 740-4321, HSC: (323) 442-1000 – 24/7 on call
dps.usc.edu, emergency.usc.edu
Emergency assistance and avenue to report a crime. Latest updates regarding safety, including ways in which instruction will be continued if an officially declared emergency makes travel to campus infeasible.

USC Department of Public Safety – - UPC: (213) 740-6000, HSC: (323) 442-120 – 24/7 on call
dps.usc.edu
Non-emergency assistance or information.

Resources for Online Students
The Course Blackboard page and the GIST Community Blackboard page have many resources available for distance students enrolled in our graduate programs. In addition, all registered students can access electronic library resources through the link https://libraries.usc.edu/. Also, the USC Libraries have many important resources available for distance students through the link: https://libraries.usc.edu/faculty-students/distance-learners. These include instructional videos, remote access to university resources, and other key contact information for distance students.