
Sept.18.2020

EE 599: Computing Principles for Electrical Engineers
Units: 2
Term—Day—Time: Spring 2021, MW 6:30pm to 8:20pm

Midterm Exam: Wednesday March 10th, 7-9 p.m
Final Exam: Wednesday, May 5th, 7-9 p.m

Location: TBD

Instructor: Arash Saifhashemi
Office: EEB 504B
Office Hours: TBD
Contact Info: saifhash@usc.edu

Teaching Assistant:
Office: TBD
Office Hours: TBD
Contact Info: TBD

Page 2

Course Description
This course provides a broad introduction to concepts required for advanced computer programming. It is
targeted to graduate electrical engineering students with either informal or only basic programming
experience. It teaches knowledge and develops practices required to understand and implement
sophisticated software solutions. The course consists of two main parts: (1) foundations of software
engineering, and (2) algorithms and data structures. The course includes a theoretical basis to critically
analyze algorithms, data structures, and mathematical methods. It emphasizes learning by implementation
and priotorizes coding. All assignments and projects include a major programming component to develop
correct execution over suggestive pseudo-code. Also, the course emphasizes on modern software
engineering methodologies such as source control and testing using programming languages such as C++
and Python.

Learning Objectives
A student that successfully completes this course will:

• Understand code to execution including building, tokenization, compiling, and linking.
• Apply step-wise debugging to identify causes of software defects.
• Utilize modern programming practices such as STL objects and object oriented (OO) programming

including inheritance, overloading, templates, and polymorphism.
• Possess knowledge to identify and explain standard algorithms (sort, search, recursion, dynamic

programming, backtracking) and data structures (map, set, heap, tree, hash, lists, graphs).
• Develop skills to analyze novel code for its performance in both time and space complexity.
• Be comfortable deciding between multiple solutions given optimization or cost criteria.
• Apply test-driven software design and understand its role in minimizing errors and regression.
• Understand the connection between running software and underlying hardware including basics of

threading, interrupts, memory management, caching, and device access.

Prerequisite(s): None
Co-Requisite(s): None
Concurrent Enrollment: None
Recommended Preparation: Exposure to computer programming

Technological Proficiency and Hardware/Software Required
You need access to a full stack for both C++ and Python development. You may consider installing a linux
virtual machine to ensure maximum interoperability and access to any tools. The instructor and teaching
assistants will give guidance during the first weeks of class.

Required Readings and Supplementary Materials

1. Algorithm, 4th Edition (required)
Robert Sedgewick, Kevin Wayne (available at the campus store)

2. Algorithms in C++, 3rd Edition (optional, C++ supplement to 1)
Robert Sedgewick, Kevin Wayne (available at the campus store)

3. The C++ Programming Language, 4th Edition (recommended)
Bjarne Stroustrup (available at the campus store)

4. Code Complete: A Practical Handbook of Software Construction, 2nd Edition (recommended)
Steve McConnell (available at the campus store)

Note: The texts are secondary to in-class lecture material and homework sets.

Description and Assessment of Assignments
There will be about eight homework assignments. Homework will be assigned every 1-2 weeks. The
assignments involve coding implementation in C++ with a proof of correctness and unit tests.

Page 3

All projects and assignments must be submitted electronically either through source code management (e.g.
Github) or for auto-grading. There is no “paper-copy”submission required or allowed. Review requirements
for each assignment before submission.

No submission should be “headless” and should include a README file to describe any methods, testing,
and validation.

Late submission policy
The following policy and late submission penalties will be applied for homework and project submissions:

- 1 day late: -15 points (of 100)
- 2 days late: -30 points (of 100)
- 3 days late: -45 points (of 100)
- More than 3 days: 0 points

In case of medical or other emergency, you should inform the instructor as soon as possible.

Exams
Ensure that you can stream live video (mute or audio off) during the entirety of the work time for
proctoring. You must make prior arrangements with me if that is not possible. You must show how you
arrived at your answers to receive full credit. Any cheating may result in an “F” in the course and will be
referred to Student Affairs for other penalties. Make up exams will only be given for valid medical or family
emergency excuses (proof required).

Extra Credit
Exams and assignment may have extra credit. For example a homework assignment may have 130 points
where 100 points is considered as extra credit. The extra credit for each assignment will only apply to that
assignment and will not be used as compensation to other assignments or exams.

Attendance and Participation
Attendance is mandatory to all lectures and discussions. You are responsible for missed announcements
and changes to the course schedule and assignments. Your attendance may be synchronous or
asynchronous. Make synchronous attendance a priority. Per university guidance: you should plan to attend
every synchronous session of this class regardless of when it occurs in your time zone. Some unreasonable
hours (sessions outside 07:00 – 22:00) may preclude this general rule.

Synchronous class dynamics are improved substantially with visible participants in the class. Arrange to
have your cameras on (default: “camera on, audio off”) during synchronous online sessions. You must
make prior arrangements with me if that is not possible.

USC policy requires that all classes conducted online be recorded for asynchronous viewing with
transcriptions made available. These recordings are considered “educational records” subject to federal
privacy laws (FERPA) as students may be personally identifiable in class recordings by voice, name, or
image. Students are not permitted to create their own class recordings without prior written
permission. Violations of these policies will be met with the appropriate disciplinary sanction.

Grading Breakdown

Assessment Tool (assignments) % of Grade
Homework 35%
Project 25%
Exam #1 20%
Exam #2 20%

Page 4

TOTAL

Letter Grades
The following table for your grades:

A 95-100
A- 90-94
B+ 87-89
B 83-86
B- 80-82
C+ 77-79
C 73-76
C- 70-72
D+ 67-69
D 63-66
D- 60-62
F 59 and below

Grading Scale
Depending on the class performance, the grades may or may not be scaled.

Assignment Submission Policy
TBD based on course timeline and instructor.

Grading Timeline
Grading will be handled by both automatic and manual means. Code submissions may be reviewed and
applied a series of test cases to determine function.

Course Schedule: A Weekly Breakdown

Lecture Readings/Preparation Homework

(Topics from Lecture and
Discussion of the same
week)

Page 5

Week 1 Motivation, Introduction, Goals

Example: design, algorithm,
implementation, analysis

Build systems, Unit tests and Version
control, Monte Carlo Simulation

Lecture slides

HW 1 is assigned: tools and
setup

Week 2 Big-O notation

Logic (propositional, truth tables, first
order, predicate), methods of proof

C++ introduction: classes, member
variables and methods. Public/private.

Lecture slides
[3]: Pt. 1, Sec. 6, 9, 12, 13
[1]: Ch. 1.3, 1.4

HW 2 is assigned: monte
carlo simulation

(HW 1 is due)

Week 3 C++: Functions, Pointers and references

C++ constructor, copy constructor, and
destructor.

Functors and Lambda functions

Lecture slides

[3]: Sec. 7, 8, 15, 16, 17

HW 3 is assigned: functions
and pointers

(HW 2 is due)

Week 4 Data Structures: array, stack, linked list,
queue, tree

C++ STL (string, list, vector, set, map,
algorithm)

Lecture slides

[3]: Ch. 14, 18-21, 27, Pt. 4

HW 4 is assigned: STL

(HW 3 is due)

Week 5 Data Structures: heap, tree and traversal
algorithms, graph traversal (DFS, BFS,
topological)

Greedy algorithms: MST, shortest path

Lecture slides

[1]: Ch. 3.1 – 3.4

HW 5 is assigned: Graph and
Tree traversal

(HW 4 is due)

Week 6 Binary search, and binary search trees

Recursion, Divide and conquer

Lecture slides

[1]: Ch. 2.1 – 2.4

HW 6 is assigned:
Algorithms: binary search
and BST

(HW 5 is due)

Week 7 Sorting algorithms 1

Lecture slides
[1]: Ch. 2.1 – 2.4

HW 6 is assigned:

Week 8 Sorting algorithms 2

Benchmarking

Lecture slides
[1]: Ch. 2.1 – 2.4

Week 9 Review and midterm preparation (HW 6 is due)

Page 6

Project discussion

Week
10

Dynamic programming and memoization Lecture slides HW 7 is assigned

Week
11

More on dynamic promming (shortest
path algorithms)
Backtracking

Lecture slides (HW 7 due)

HW 8 is assigned

Week
12

Multithreading: introduction

Lecture slides (Project topic due)
(HW 8 due)

Week
13

Multithreading: memory management,
atomic variables, synchronization and
applications

Cache and memory, hardware and
interrupts, Map reduce

Lecture slides (project phase 1 due)

Week
14

Advanced C++ concepts: polymorphism,
inheritance, move sematics, templates,
variadic templates

 Project videos and
Project phase 2 due

Week
15

Prospects and review Project Final Report due

Final
Exam

Final exam on Wednesday, May 6th, 7-9
p.m

Projects
Teams of two students (teams of one or three with instructor approval) design and develop a software
solution to a self-identified industry or research problem. Teams are encouraged to devise problems of
particular interest to their backgrounds, interest, or research. The instructor will guide teams with difficulty
identifying a suitable topic. All projects must obtain the instructor’s written approval. Teams will prepare
and present their approved project and show how it applies course material, concepts, and best-practices.
Attendance and participation during the project presentation session(s) are mandatory.

Requirements
Project topics must include sufficient mathematical and algorithmic complexity and either include or extend
substantive material from the course. Teams should treat the project as a platform to demonstrate mastery
of design specification, algorithmic analysis, testing, debugging, and result validation. All projects must use
the C++ language as the primary computer language unless approved explicitly in writing by the instructor.
But teams may use or integrate additional languages for tooling and supporting.

Page 7

Example projects
1. Document database engine: Develop an interface for writing and retrieving documents from a

managed storage engine. The system should not wrap another database engine but should expose
a protocol for authentication, communication, and error handling. It may also explore disaster or
corruption recovery.

2. Semantic translator: Build a system convert an input string or stream from one defined
semantic/language to another. The mapping should not be a trivial one-to-one and should require
the retention of state or combination of non-contiguous information.

3. Digitial signal processor: Design a complete software package to load and manipulate digital signal
data (e.g. audio, image, video). It should be a complete user experience and provide facility
beyond a single-purpose tool. It should include state information to provide feedback based on a
sequence of user input such as Undo, Redo, and real-time updating.

Grading and Milestones
Phase 1 – Design, components, classes, and tests week 13 20%
Phase 2 – Integration and deployment week 15 25%
Demo and presentation finals 20%
Project report and video 35%

Deliverables and demo

1. Written project report: the project report should summarize the topic, provide relevant
background (theoretical or applied), timeline and contributions, and document challenges and
extensions. It should provide discussion sufficient that an uninformed expert could understand the
logic, algorithmic decisions, and implementations. Teams should provide quantifiable metrics to
justify engineering tradeoffs.

2. Presentation: Approximately 10 minute (depends on class size) presentation to describe to the
class their topic problem and their solution. It should provide only what is necessary to understand
the “what” and “why” and include minimal theoretical background.

3. Video: 3-4 minute video that describes the problem, your design, and implementation. You may
choose to upload this to a video sharing site such as YouTube but that is not required. All team
members must participate equally.

4. Source code: submitted to instructor by providing link to pull from github.

Page 8

Statement on Academic Conduct and Support Systems

Academic Conduct:

Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is
a serious academic offense with serious consequences. Please familiarize yourself with the discussion of
plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards”
policy.usc.edu/scampus-part-b. Other forms of academic dishonesty are equally unacceptable. See
additional information in SCampus and university policies on scientific misconduct, policy.usc.edu/scientific-
misconduct.

Support Systems:

Counseling and Mental Health - (213) 740-9355 – 24/7 on call
studenthealth.usc.edu/counseling
Free and confidential mental health treatment for students, including short-term psychotherapy, group
counseling, stress fitness workshops, and crisis intervention.

National Suicide Prevention Lifeline - 1 (800) 273-8255 – 24/7 on call
suicidepreventionlifeline.org
Free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7
days a week.

Relationship and Sexual Violence Prevention Services (RSVP) - (213) 740-9355(WELL), press “0” after hours –
24/7 on call
studenthealth.usc.edu/sexual-assault
Free and confidential therapy services, workshops, and training for situations related to gender-based harm.

Office of Equity and Diversity (OED) - (213) 740-5086 | Title IX – (213) 821-8298
equity.usc.edu, titleix.usc.edu
Information about how to get help or help someone affected by harassment or discrimination, rights of
protected classes, reporting options, and additional resources for students, faculty, staff, visitors, and
applicants.

Reporting Incidents of Bias or Harassment - (213) 740-5086 or (213) 821-8298
usc-advocate.symplicity.com/care_report
Avenue to report incidents of bias, hate crimes, and microaggressions to the Office of Equity and Diversity
|Title IX for appropriate investigation, supportive measures, and response.

The Office of Disability Services and Programs - (213) 740-0776
dsp.usc.edu
Support and accommodations for students with disabilities. Services include assistance in providing
readers/notetakers/interpreters, special accommodations for test taking needs, assistance with
architectural barriers, assistive technology, and support for individual needs.

USC Campus Support and Intervention - (213) 821-4710
campussupport.usc.edu
Assists students and families in resolving complex personal, financial, and academic issues adversely
affecting their success as a student.

Diversity at USC - (213) 740-2101
diversity.usc.edu

Page 9

Information on events, programs and training, the Provost’s Diversity and Inclusion Council, Diversity
Liaisons for each academic school, chronology, participation, and various resources for students.

USC Emergency - UPC: (213) 740-4321, HSC: (323) 442-1000 – 24/7 on call
dps.usc.edu, emergency.usc.edu
Emergency assistance and avenue to report a crime. Latest updates regarding safety, including ways in
which instruction will be continued if an officially declared emergency makes travel to campus infeasible.

USC Department of Public Safety - UPC: (213) 740-6000, HSC: (323) 442-120 – 24/7 on call
dps.usc.edu
Non-emergency assistance or information.

