USC VITERBI SCHOOL OF ENGINEERING DATA SCIENCE PROGRAM

DSCI 554: Data Visualization

2:00-3:50pm Monday, Wednesday - ONLINE (4 Units)

Instructor: Dr. Luciano Nocera Email: nocera@usc.edu Office: ONLINE Assistant: TBD Email: TBD

Instructor's Office Hours: 02:00pm-04:00pm Tuesday ONLINE. Other hours by appointment only. Students are advised to make appointments ahead of time in any event and be specific with the subject matter to be discussed. Students should also be prepared for their appointment by bringing all applicable materials and information.

Catalogue Description

Graphical depictions of data for communication, analysis, and decision support. Cognitive processing and perception of visual data and visualizations. Designing effective visualizations. Implementing interactive visualizations.

Course Objective

Visualizations are graphical depictions of data that help people communicate, understand and make decisions. In this course, students will learn the theory and practice of creating data visualizations. In the theory part students will learn how our brains process visual data, and how the way our brains work affects how we perceive visualizations and how we should design visualizations to make them easy to understand. Students will get an understanding of which colors and shapes stand out clearly, how to organize visualizations and when images convey ideas more clearly than words. In the practical part of the course students will learn guidelines and methods to design effective visualizations and how to implement interactive visualizations in the Web and and in notebooks using a variety of modern visualization libraries and tools.

Class Communication

Blackboard at USC will be used for class communication and online collaboration tools will be leveraged to facilitate the homework and the projects.

Books and Readings

All books, papers or reports will be available to students online, at the USC bookstore and/or via the USC libraries at http://www.usc.edu/libraries/.

Required Readings

Visual Thinking for Design, by Colin Ware. ISBN: 978-0123750303.

The Functional Art: An Introduction to Information Graphics and Visualization, by Alberto Cairo. ISBN: 978-0321834737.

Murray, Scott. Interactive Data Visualization for the Web: An Introduction to Designing with D3. O'Reilly Media, Inc., 2017.

Optional Readings

Envisioning Information, by Edward R. Tufte. ISBN: 978-0961392116.

Cairo, Alberto. The truthful art: data, charts, and maps for communication. New Riders, 2016.

Grading Schema

Quizzes:	20%
Homework Assignments:	30%
Class Project:	30%
Final:	20%
Total	100%

Grades will range from A through F. The following is the breakdown for grading:

94 - 100 = A	74 - 76 = C
90 - 93 = A -	70 - 73 = C-
87 - 89 = B +	67 - 69 = D+
84 - 86 = B	64 - 66 = D
80 - 83 = B-	60 - 63 = D-
77 - 79 = C+	Below 60 is an F

The graded coursework will consist of four major components:

Quizzes

There will be a quiz most weeks. The quiz will be 10 to 20 minutes. Quizzes will include: Questions testing understanding of the material from the previous week. Questions about the readings for the class. The questions are suitable for students who read the required readings. The worst

quiz score will not count towards the grade. There will be no make-ups or rescheduling for any reason (this is why one quiz does not count).

Homework Assignments

Homework will be assigned weekly. Homeworks will require 1-4 hours to complete. Each student is expected to submit the completed assignment each week. Homeworks are submitted individually and students will receive individual scores. Students may work in groups to complete the homeworks however it is expected that coding is done independently by each student. For the last four weeks of the course there will be no homeworks as students are expected to work on the class projects exclusively. Students are expected to arrive in class each week having completed the assignments for the period, and be prepared to engage in informed discussions on those materials.

Final Exam

The final exam is cumulative, and will be done on the day that USC schedules it. Students should look at the schedule of finals before planning their vacations, as there is no option for rescheduling.

Class Project

The class project gives students the opportunity to put into practice the theory and techniques covered in class. The projects are about designing and implementing a dashboard or an interactive infographic. The project is a group project of two-three students. An important objective of the class is to teach students to work in groups, so students cannot work on projects individually. In addition, groups will be organized into clusters of 3 or 4 groups. The purpose of clusters is to provide a way for groups to critique each others' designs.

Project deliverables will consist of the following 4 items:

- 1. Demo: students should produce a working demonstration of the system and deploy it.
- 2. Video: students should produce a 5-minute (or less) video of their application and upload it to YouTube.
- 3. Paper: students should write a final paper about the project as if they were submitting it to a conference for publication. The papers should be written in the LNCS format (Springer LNCS guidelines, Overleaf LNCS template) and should be at most 5 pages long. The paper should be organized as a publication, stating the problem being addressed, the approach and description of the system, evaluation, related work and references.
- 4. Presentation: students will present their projects to the class using the PechaKucha presentation format (see http://www.pechakucha.org). PechaKucha is a simple presentation format where you show 20 images, each for 20 seconds. The images advance automatically and you talk along. You cannot use bullets in any of your slides.

Statement for Students with Disabilities

Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (or to TA) as early in the semester as possible. DSP is located in STU 301 and is open 8:30 a.m. - 5:00 p.m., Monday through Friday. Website and contact information for DSP: http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html, (213) 740-0776 (Phone), (213) 740-6948 (TDD only), (213) 740-8216 (FAX) ability@usc.edu.

Statement on Academic Integrity

USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one's own academic work from misuse by others as well as to avoid using another's work as one's own. All students are expected to understand and abide by these principles. SCampus, the Student Guidebook, (http://www.usc.edu/scampus or http://scampus.usc.edu) contains the University Student Conduct Code (see University Governance, Section 11.00), while the recommended sanctions are located in Appendix A.

Emergency Preparedness/Course Continuity in a Crisis

In case of a declared emergency if travel to campus is not feasible, USC executive leadership will announce an electronic way for instructors to teach students in their residence halls or homes using a combination of Blackboard, teleconferencing, and other technologies.

Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism - presenting someone else's ideas as your own, either verbatim or recast in your own words - is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Section 11, Behavior Violating University Standards. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct. Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the Office of Equity and Diversity http://equity.usc.edu/ or to the Department of Public Safety. This is important for the safety whole USC community. Another member of the university community - such as a friend, classmate, advisor, or faculty member - can help initiate the report, or can initiate the report on behalf of another person. The Center for Women and Men provides 24/7 confidential support, and the sexual assault resource center webpage sarc@usc.edu describes reporting options and other resources.

Support Systems

A number of USC's schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute, which sponsors courses and workshops specifically for international graduate students. The Office of Disability Services and Programs provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency Information will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.

Statement on Diversity

The diversity of the participants in this course is a valuable source of ideas, problem solving strategies, and engineering creativity. I encourage and support the efforts of all of our students to contribute freely and enthusiastically. We are members of an academic community where it is our shared responsibility to cultivate a climate where all students and individuals are valued and where both they and their ideas are treated with respect, regardless of their differences, visible or invisible.

Schedule

The schedule is tentative and subject to chang	e.
--	----

Week	Торіс	Readings	Homework	Exam
Week 1	Introduction to information	Murray Ch. 1,2	Assignment 1. Follow Cairo	
Aug. 24	visualization; why it is im-	Cairo I, Ch. 1,2	Part I, Ch.1 example on UN	
Aug. 26	portant, what are it's uses,		Data. For 10 countries se-	
	examples, course overview,		lect UN data of your choice	
	working with GIT.		containing data over time.	
			Import the data in Google	
			Sheets and format the data to	
			create a line chart, export the	
			chart to a web page.	
Week 2	Survey of visualization tech-	Murray Ch. 3,4	Assignment 2. Use UN Data	Quiz 1
Aug. 31	niques; introduction to Web	A Tour through	for the same 10 countries	
Sep. 2	Technologies.	the Visualization	of Assignment 1 to create a	
		Zoo, J. Heer,	bubble cloud with Inkscape.	
		M. Bostock,	Create a web page named in-	
		V. Ogievetsky.	dex.html and add the SVG	
		Communications	created with Inkscape. In	
		of the ACM, Jun	the same page, recreate the	
		2010.	bubble cloud with SVG ele-	
		Google charts	ments and using javascript.	
		manual	Add the line chart of As-	
			signment 1 coded using the	
			Google Charts library.	
Week 3	Nomenclature of popular	Cairo I, Ch. 3	Assignment 3. Critiquing vi-	Quiz 2
Sep. 9	visualization tools; design	Murray Ch. 4,5	sualizations in news media.	
	space of visualizations; the		Find 2 different infograph-	
	visualization wheel; design		ics on the same subject and	
	trade-offs; developing inter-		compare them using the vi-	
	active graphics; introduction		sualization wheel. What do	
	to D3. Introduction to		they do well, what do they	
	Tableau.		do poorly? Suggest improve-	
			ments for the things they do	
			poorly. Document in HTML.	

Week	Торіс	Readings	Homework	Exam
Week 4	Balancing function and es-	Cairo I, Ch. 4	Assignment 4. From World	Quiz 3
Sep. 14	thetics; minimalism; making	Murray Ch. 6	Bank Open Data download	
Sep. 16	visualizations memorable;		Rural population (% of total	
	designing dashboards; D3		population) for 20 countries	
	drawing with DIV and SVG;		and a year of your choice.	
	Styling graphic elements;		In an HTML document, load	
	creating basic plots.		the data as CSV using D3.	
			With D3, using data joins,	
			create an HTML table, and	
			SVG bar chart, scatterplot,	
			and bubble chart. Publish on	
			your USC SCF account.	
Week 5	The eye and the visual brain;	Ware Ch. 1	Assignment 5. Create a pre-	Quiz 4
Sep. 21	visual queries; implications	Cairo II, Ch. 5	sentation with Sozi to pitch	
Sep. 23	for design; scales; using	Murray Ch. 7,8	your project. Pitch the	
	scales in scatter plot and		projects in a format similar	
	bar charts; using scales with		to the PechaKucha presenta-	
	axes; rendering axes.		tion format to show 15 im-	
			ages, each for 20 seconds.	
			The images advance auto-	
			matically and you talk along	
			with the images. You cannot	
			use bullet list in your slides.	
Week 6	Project proposals presenta-	Murray Ch. 7,8	Assignment 6. Using the	
Sep. 28	tions. Lab.		data of Assignment 4, load	
Sep. 30			the data in JSON format,	
			then using D3 data joins,	
			present the data in as SVG	
			table, scatterplot, bar chart	
			and slope graph. All plots	
			should use D3 scales and in-	
			clude axes, axes labels, tick	
			marks, and tick mark labels	
			as applicable. Publish on	
			USC SCF account.	

Week	Торіс	Readings	Homework	Exam
Week 7	Preattentive features. Updat-	Ware Ch. 2	Assignment 7. Select 1 year	Quiz 5
Oct. 5	ing D3 visualizations; chang-	Cairo II, Ch. 6	from the dataset you created	
Oct. 7	ing data and updating the vi-	Murray Ch.	for Assignment 1. Load the	
	suals; smooth transitions and	9,10,12	data in JSON and implement	
	animations. Updating the	Healey and	a D3 bar chart complete	
	axes; adding and removing	James, Atten-	with axes, tick marks and	
	data values.	tion and visual	labels. Implement smooth	
		memory in	transitions based on user in-	
		visualization	put to reorder the bars: show	
		and computer	all bars in alphabetic or-	
		graphics, IEEE	der (default), ascending or-	
		Transactions on	der, descending order, top 5,	
		Visualization	bottom 5. Update the axes	
		and Computer	and legend as needed.	
		Graphics, 2012.		
Week 8	Colors and color vision;	Ware Ch. 4	Assignment 8. Use data from	Quiz 6
Oct. 12	trichromatic theory; oppo-	Murray Ch. 11,13	Assignment 1 (one year 10	
Oct. 14	nent process theory; color	Cairo IV Profile	countries) to build a pro-	
	channels; color coding in-	1-5	portional symbol map and a	
	formation. Color models.		choropleth map with D3.	
	Emphasis and highlighting;			
	color sequences, semantics of			
	color. D3 color generators; D3 layouts.			
Week 9	Depth perception and cue	Ware Ch. 5	Assignment 9. Use data from	Quiz 7
Oct. 19	theory: different ways to	Murray Ch. 14,15	one of your assignments and	Quiz /
Oct. 1) Oct. 21	perceive depth. 2.5D de-	Cairo IV Profile	implement three layouts of	
000.21	sign; showing data in maps;	6-10	your choice using D3.	
	map layers; map projec-	010	your choice using Do.	
	tions; working with geospa-			
	tial data.			
Week 10	Statistics and statistical	Wickham,	Work on Project	Quiz 8
Oct. 26	graphics. Python and R	Hadley. "gg-	Assignment 10. Using	
Oct. 28	basics and major graphing	plot2." Wiley	Python notebook(s) do all	
	libraries, notebooks. Part I.	Interdisciplinary	the exercises provided in	
		Reviews: Com-	class.	
		putational Statis-		
		tics, 2011.		
Week 11	Python and R basics and ma-	Murray Ch. 16	Work on Project	
Nov. 2	jor graphing libraries, note-	Walk-Through &	Assignment 11. Use Tableau,	
Nov. 4	books. Part II.	A. Case	Python and R notebooks, to	
		Cairo III, Ch. 8,9	visualize (a subset of) your	
			project data.	

Week	Торіс	Readings	Homework	Exam
Nov. 9	Linking perception and ac-	Ware Ch. 3	Work on Project.	Quiz 9
Nov. 11	tion; the <i>where</i> pathway	Cairo II, Ch. 7		
Week 12	in our brains; how the	Cairo IV, Profiles		
	brain recognizes objects; the			
	pattern-processing machin-			
	ery; visual memory and at-			
	tention; feature encoding;			
	Gestalt theory; semilolgy.			
	Lab on projects.			
Week 13	Course review.	Ware Ch. 6,7	Work on Project.	Quiz 10
Nov. 16	Lab on projects.	Cairo IV, Profiles		
Nov. 18				
Week 14	Project Presentations.			
Nov. 23				
TBD	Final examination per University schedule – TBD, week of Dec 2-9			