CE 529a Finite Element Analysis (3)

2020 Fall Semester — Course Syllabus

Lecture	Tuesday	5:30 p.m. to 8:50 p.m.	OHE 132			
Lab	Friday	5:00 p.m. to 6:20 p.m.	OHE 122			
Professor	L. Carter Wellford					
Office	KAP 238B					
Office Hours	M, TH 12:00 PM - 1:00 PM					
Phone	(310) 968-1224 cell					
Email	wellford@usc.edu					
TA Office Hours						
Teaching Assistant	An Xi					
Email	axin@usc.edu					
Office						
Office Hours						
Emphasis	ABAQUS, ABAQUS Lab, HW and Exam Preparation					
Course Producer	To be defined					
Email						
Office						
Office Hours						
Emphasis	Computer Implementation, Matlab, ABAQUS, Course Project					
Prerequisites	Graduate Standing					
Textbook	Cook, et. al., "Concepts and Applications of Finite Element Analysis", Wiley					
Course Reader	Wellford, L.C., "CE 529a Class Notes" (available as a "Class Reader" in USC Bookstore)					
Course Description	Typical engineering problems discussed on a physical basis. Setup and solution of problems by means of the existing mathematical tools					
Course Objectives	See description below					
Learning Objectives						
Policies on						
Late work	No late homework will be accepted					
Make-up work						

CE 529a Finite Element Analysis (3)

2020 Fall Semester — Course Syllabus

Incomplete work			
Extra credit			
Final grade sche	ema is based on the fol	lowing percentages of graded coursework :	
Homework	25 %	Homework assigned weekly, problems are due on the following week	
Lab Homework	5 %		
Midterm	25 %	10/13/2020	
Final Project	20 %	Due 12/8/2020	
Final Exam	25 %	12/8/2020 — 4:30—6:30pm	
Total	100 %		

Class Calendar (topic dates are subject to change)

Week	Date	Main Lecture Topics	Exams	Due Dates
1	8/25	Variational Models, Calculus of Variations		
2	9/1	Constraints – Lagrange's multiplier, Penalty – Galerkin Method		
3	9/8	Continuum Elements I, Isoparametric Ele., Numerical Integration		
4	9/15	Elasticity Problems, Numerical Implementation, Stress Calculation		
5	9/22	Incompressible and Constrained Problems		
6	9/29	Continuum Elements II, Axisymmetric Problems		
7	10/6	Plate Theory; Plate Elements; Kirchhoff and Mindlin Elements		
8	10/13		Midterm	
9	10/20	DKQ Plate Elements, Shell Theory, Analysis of Shells		
10	10/27	Structural Dynamics, Time History Analysis, Free Vibration		
11	11/3	Geometrically Nonlinear Analysis of Bars, Beams, Buckling		
12	11/10	Geometric Nonlinearity – Total and Updated Lagrangian Methods		
13	11/17	Material Nonlinearity – Plasticity Fundamentals, Return Algorithms		
14	11/24	Material Nonlinearity – Hyperelastic Materials		
	12/8	4:30-6:30 PM	Final Exam	Project

Variational Models

Calculus of variations Constraints – Lagrange multiplier Constraints – penalty Galerkin method **Continuum Finite Elements** 1-D interpolation methods

CE 529a Finite Element Analysis (3)

2020 Fall Semester — Course Syllabus

2-D interpolation methods – rectangles and triangles 3-D interpolation methods - hexahedron, tetrahedron, prism **Isoparameteric Elements** Mappings - physical system and natural coordinate system Numerical integration – Gauss quadrature Numerical Implementation of the Finite Element Method Column storage schemes Assembly in active column form Static column solvers Mesh generation Finite Elements for Elasticity Problems Plane stress – plane strain Stress calculation Incompressible problems Pressure, enforced displacement, and thermal loadings Finite Elements for Axisymmetric Elasticity Problems **Finite Elements for Plate Problems Finite Elements for Shell Problems Finite Elements for Dynamic Problems** Introduction to Nonlinear Finite Element Analysis Adaptive methods Stability problems

STATEMENT ON ACADEMIC INTEGRITY

USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one's own academic work from misuse by others as well as to avoid using another's work as one's own.

All students are expected to understand and abide by these principles. *SCampus*, the Student Guidebook, contains the Student Conduct Code in Section 11.00, while the recommended sanctions are located in Appendix A: http://www.usc.edu/dept/publications/SCAMPUS/gov/. Students will be referred to the Office of Student Judicial Affairs and Community Standards for further review, should there be any suspicion of academic dishonesty. The Review process can be found at: http://www.usc.edu/student-affairs/SJACS/.

STATEMENT FOR STUDENTS WITH DISABILITIES

Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (or to TA) as early in the semester as possible.

DSP Contact Information

Office location: STU 301

Hours open: 8:30 a.m. until 5:00 p.m. — Monday through Friday.

Phone number: (213) 740-0776