ECONOMICS 613
Economic and Financial Time Series (I)

COURSE OBJECTIVES
This course is concerned with recent developments in the time series techniques for the analysis of economic and financial markets. It provides a rigorous, nevertheless user-friendly, account of the time series techniques dealing with univariate and multivariate time series models. The topics to be covered include an overview of basic econometric techniques, an introduction to stochastic processes, univariate and multivariate time series, tests for unit roots, cointegration, impulse response analysis, autoregressive conditional heteroscedasticity models, simultaneous equation models, vector autoregressions, causality, forecasting, multivariate volatility models, and models subject to structural change. The techniques will be illustrated using Microfit 5.5 with applications to real output, inflation, interest rates, exchange rates and stock prices.

Prerequisite: ECON 609

LECTURE TIMES: Mondays, 9:00 a.m. -11:50 a.m.
First Class - Aug 17, 2020 No Class - Sep 7, 2020 (Labor Day)
Last Class – Nov 09, 2020

LOCATION: Online

OFFICE HOURS: Mondays 2:00-3:00 p.m. or by appointment only. Contact Akiko Matsukiyo, amatsu@usc.edu for scheduling.

TA: Zhan Gao (zhangao@usc.edu)

COURSE WEBPAGE: https://blackboard.usc.edu

TAKE HOME PROBLEM SETS: The problem sets will be assigned and posted on blackboard on August 24, Sep 7, Sep 21, Oct 5, Oct 19, Oct 26 and due on Sep 7, Sep 21, Oct 5, Oct 19, Nov 2, Nov 16 respectively.

<table>
<thead>
<tr>
<th>Problem Set</th>
<th>Post Date</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Set 1</td>
<td>Aug 24</td>
<td>Sep 7</td>
</tr>
<tr>
<td>Problem Set 2</td>
<td>Sep 7</td>
<td>Sep 21</td>
</tr>
<tr>
<td>Problem Set 3</td>
<td>Sep 21</td>
<td>Oct 5</td>
</tr>
<tr>
<td>Problem Set 4</td>
<td>Oct 5</td>
<td>Oct 19</td>
</tr>
<tr>
<td>Problem Set 5</td>
<td>Oct 19</td>
<td>Nov 2</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Problem Set 6</td>
<td>Nov 2</td>
<td>Nov 16</td>
</tr>
</tbody>
</table>

MIDTERM EXAM: September 28, 2020

FINAL EXAM: To be confirmed (between Nov. 17 – 24)

GRADING: The final grade will be based on problem sets (40%), a midterm exam (30%) and a final exam (30%).

COURSE TEXTBOOK: I shall be using the following text:

In addition, I shall post handouts on Blackboard as required. The following texts are also recommended as optional:

COMPUTER PROGRAM:

The course will make use of Microfit 5.5, a freeware downloadable from http://www.econ.cam.ac.uk/people-files/emeritus/mhp1/Microfit/Microfit.html

But students are free to use whatever software package they find most convenient.

COURSE OUTLINE:

Basic Econometrics - Regression Analysis (an overview)

Classical linear regression model and its assumptions:
Estimation, OLS, maximum likelihood, generalized method of moments, multicollinearity, goodness of fit measures, hypothesis testing, dummy variables, seasonal corrections, and structural stability tests

Pesaran (2015), Chapters 1, 2, 3

Departures from the classical model:
Residual serial correlation, heteroscedasticity, dependence between regressors and the equation’s disturbance term, functional form misspecification, and non-normal errors

Pesaran (2015), Chapters 4, 5

Diagnostic tests:
DW, h and LM tests of residual serial correlation, Ramsey’s test of functional form misspecification, Jarque-Bera test of normality, and simple tests of heteroscedasticity

Pesaran (2015), Sections 4.5 and 5.8

Hamilton (1994), Chapter 8, Greene Chapters 3-6,

Model selection criteria:
Akaike’s Information Criterion, Schwarz’s Bayesian information criterion and other model selection criteria

Pesaran (2015), Sections 11.4 and 11.5

Hamilton (1994), Chapter 8, PP (2009), Chapters 6 &11

Univariate Time Series Models – Modelling the Conditional Mean

Stationary stochastic processes:
Basic concepts (information sets, conditional expectations, conditional variance, stationarity, ergodicity, etc.) Autocorrelation function and spectral density function.

Pesaran (2015), Chapters 12, 13

Hamilton (1994), Chapter 6

Univariate linear time series techniques:
Wold decomposition theorem and the moving average representation of stationary processes. Autoregressive (AR) and Autoregressive and Moving-average (ARMA) models. Estimation and hypothesis testing. Decomposition of stationary processes into trend, seasonal and cyclical components. States pace models.

Pesaran (2015), Chapter 14

Non-stationary time series:

Pesaran (2015), Chapters 15, 16

Forecasting and Structural Change:
Point, interval and probability forecasts, Forecast evaluation: MSFE, market timing tests, decision-based forecast evaluation techniques, Parameter instability and forecasting, Random coefficient models, Recursive estimation and recursive modelling (“Real Time Econometrics”), CUSUM and CUSUM of Squares tests, and Recursive F tests, Choice of observation window (expanding, rolling and exponential decay windows)

Pesaran (2015), Chapter 17

Univariate Time Series – Modelling the Conditional Variance

RiskMetrics volatility estimators, Equally weighted, exponentially weighted, Models with variable conditional variances, Autoregressive conditional heteroscedastic (ARCH) models, Generalized ARCH models (GARCH), Mean-variance relations, GARCH-in-mean models

Pesaran (2015), Chapter 18

Multivariate Time Series – VAR models, Cointegration, and Vector Error Correction Models

VARs, univariate representations and Granger non-causality, Cointegration and error correction models, Granger representation theorem, Alternative methods of testing for cointegration, Identification and estimation of cointegrating vectors subject to restrictions (Long-run structural modelling), Testing restrictions on the cointegrating relations. Impulse response analysis and error variance decomposition (orthogonalized and generalized approaches).

Pesaran (2015), Chapters 21, 22

Applications

A vector error correcting model of the UK, Garratt, Lee, Pesaran and Shin (2006), Chapter 9
Application of cointegration analysis to the term structure of interest. PP (2009), Lesson 16.7
Modelling volatility in asset prices (daily, weekly and monthly returns)

Pesaran (2015), Section 25.8

Further Readings (books)
The time series econometric literature is vast and growing. In what follows, I have chosen a number of key references which have been particularly important in shaping the recent developments in the subject.

Among the numerous texts published on time series, the classic text of Box and Jenkins is still a must. The third edition, written with Gregory Reinsel, is recommended:

The latest edition of Chatfield’s text also provides a good introduction to the subject:

The text by Fuller is also worthwhile consulting as it contains a rigorous treatment of the distribution theory of sample estimates of ARIMA processes and gives an account of the unit root problem:

The text by Brockwell and Davis also provides a rigorous treatment of the univariate time series model:

As far as the analysis of multivariate time series is concerned, I recommend

This is an excellent text, but despite its introductory nature it is still quite advanced.

In addition to the above texts, there are also a number of books that have been written especially for economists. In this category the following texts are recommended:

Johansen’s book provides a rigorous analysis of cointegration. The recent book by Choi is more comprehensive and up-to-date and less technical.

The focus of the above texts (as well as the course) is on linear time series models. For non-linear forecasting methods the following texts are recommended:

General Texts in Econometrics

In addition to the above texts on time series, the following general econometrics texts are also useful for the course:

Chapter 1 – 13 provides a nice overview of basic econometrics covered in the first year Ph.D. class

A gentle introduction to econometrics as well as statistical computing for students with no formal training in econometrics.