Arch 215:
Design for the Thermal Environment
Units: 3
Term – Day – Time:
Fall 2020: Tuesday, Thursday, 9:30 am – 10:50 am:

Location: online ZOOM from Blackboard 215
Instructor: Schiler
Office: Watt Hall 315 (WAH 315) / online
Office Hours: Tu, Th 11:00 am -12:00 pm, 2:00 pm – 3:00 pm, Sign up on the google address given in class.
Contact Info: marcs@usc.edu

Class Assistants: Rushita Vora, and new 1st year MBS TBA
Office: Third Floor Watt Hall MBS Corner, by WAH 315
Office Hours: TBA, posted on Blackboard
Contact Info: rjvora@usc.edu, TBA

Course Description

“The problem is much more than whether an architect graduating now can detail downpipes or sunshading efficiently, or can properly insert an opening into a wall plane. The loss of basic knowledge and the contemporary disregard for design principles are symptomatic of an enormous general shift in attitudes about what it is appropriate to teach architects.” -Glenn Murcutt, Reflecting on architectural education
A building is an intervention in a continuous environment. It creates space, it is a visual object, it imposes an idea on (or responds to) the world around it. It effects the occupant mentally and physically; indeed it is the shelter for the occupant, and as such fulfills needs which are considerably older than recorded history. It responds to natural forces around it (whether well or badly) and even effects the ecology as a whole.

This course deals with the thermal and environmental processes which affect buildings, and how the designer responds to or manipulates the thermal environment. It is necessary for the architect to understand those processes, human response to them, and the materials and tools with which we may work.

Learning Objectives

The student will learn how to design environmentally sound, reduced carbon footprint, climate responsive buildings. This will include building physics, calculations, indigenous examples, current examples, codes and standards and typical building equipment (HVAC) used in producing such designs.

Prerequisite(s): Physics 125a (or permission of instructor)

Co-Requisite(s): NA

Concurrent Enrollment: NA

Recommended Preparation:

Course Notes and Logistics

The course consists of three parts. The first and largest part of the course deals with the basic physics and concepts which are the core of environmental controls and thermal processes. We will cover the numerical information and tools required to design a reasonable building anywhere in the world, including a numerical understanding of how loads are calculated. Anyone who finds physics and nature to be disagreeable will have difficulty with this part. Please expend the necessary mental effort to understand the material if you don't already know it. You may ask for assistance.
The second part of the course deals with historical design strategies and prototypes that respond to environmental issues. Passive solar strategies, active solar panels, wind energy and photovoltaics will be covered. Special attention is given to non-Western solutions and examples.

The third part deals with unusual or recently developed systems and strategies or issues which are being addressed by society at large. This will include community solutions, sustainability issues and the professional knowledge required of an architect currently in practice in the state of California, and dealing with consultants in Heating, Ventilating and Air Conditioning.

Technological Proficiency and Hardware/Software Required

Students must know how to access Blackboard. All necessary programs and simulations will be provided and taught within the course. A substantial course “handbook” is provided.

Required Readings and Supplementary Materials

Recommended texts (not required, purchase one for reference, if you can):

Required "Text": (… is available online through Blackboard. Download and print.)
1.) Arch 215 Class Handout

The only required text is the class handout. Mechanical and Electrical Equipment for Buildings (MEEB) will be used as a reference and a backup for this class and also in the following semester for Arch 315: Design of the Luminous and Sonic Environment. It is an excellent reference for now, and for the remainder of your career. Heating, Cooling, Lighting: Sustainable Design Methods for Architects, is a slightly more accessible book, for those who have trouble with the engineering approach in MEEB. The class handout is a large collection of tables and useful graphs and information, necessary for answering questions on the quizzes and exams, and in your future.

The handouts should always be brought to or available during class, preferably kept in a notebook along with your notes or stored online where you can easily access them in the future. Again, you will need information from the handouts and notebook for exams, and even for the unannounced pop quizzes. Lectures are removed during exams. You must have your own copies.

Description and Assessment of Assignments

There will be homeworks throughout the semester. Material on quizzes, prelims (there are two "midterms") and the final will be heavily related to the homeworks. Thus, although the homeworks are not required, it is generally advisable to do them. All exams will be open book, but limited in time. This means that books and notes may be brought into the exam, but previous exams, quizzes or web pages are not allowed. You may bring a homework which you have worked out, but not a homework answer sheet from the web. During the COVID pandemic exams will be online you will be expected to conduct yourselves in a professional manner. Possession of a previous exam, quiz or any webpage while taking an exam will disqualify the exam. Too many students have counted on these in the past, instead of doing the homework, and the result has been a drop in the average grades! (You are encouraged to study using these materials before the exams, but you may not bring them into the exam with you. If you find that you have such materials among your notes, you must immediately take them out and place them upside down on the floor in front of you for the duration of the exam.)
Grading Breakdown

The grade for the semester will be based on the following percentages:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Pop quizzes @ 10% each</td>
<td>30%</td>
</tr>
<tr>
<td>2 Midterms @ 20%</td>
<td>40%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Assignment Submission Policy

Assignments are issued in class and are due at the beginning of the following class. Assignments may be resubmitted, once, and will be regraded. Assignment grades are used for reference only. The quizzes, midterms and Final Exam determine the grade, as noted above.

Additional Policies and Support

Disabilities

Over the years we have had many students in the course with various disabilities and have had excellent experiences thus far. Any Student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to Prof. Schiler as early in the semester as as possible. DSP is located in GFS 120 (Grace Ford Salvatori Hall, 3601 Watt Way. The phone number for DSP is (213) 740-0776. Email is ability@usc.edu. See https://dsp.usc.edu/contact/.

Critical Dates and Religious Observances:

The university recognizes the diversity of our community and the potential for conflicts involving academic activities and personal religious observation. The university provides a guide to such observances for reference and suggests that any concerns about lack of attendance or inability to participate fully in the course activity be fully aired at the start of the term. As a general principle, students should be excused from class for these events if properly documented and if provisions can be made to accommodate the absence and make up the lost work. Constraints on participation that conflict with adequate participation in the course and cannot be resolved to the satisfaction of the faculty and the student need to be identified prior to the drop add date for registration. After the drop add date the University and the School of Architecture shall be the sole arbiter of what constitutes appropriate attendance and participation in a given course.

Disruptive Behavior

Behavior that persistently or grossly interferes with classroom activities is considered disruptive behavior and may be subject to disciplinary action. Such behavior inhibits other students’ ability to learn and an instructor’s ability to teach. A student responsible for disruptive behavior may be required to leave class pending discussion and resolution of the problem and may be reported to the Office of Student Judicial Affairs and Community Standards for disciplinary action.

Statement on Academic Integrity

USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that only individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one’s own academic work from misuse by others as well as to avoid using another’s work as one’s own. All students are expected to understand and abide by these principles. SCampus, the Student Guidebook, (www.usc.edu/scampus or http://scampus.usc.edu) contains the University Student Conduct Code (see SCampus, Part B, Sections 11.00 – 13.20).
Professional Degree:

The USC School of Architecture’s five year BArch degree is an accredited professional architectural degree program. All students can access and review the NAAB Conditions of Accreditation (including the Student Performance Criteria) on the NAAB Website, http://www.naab.org/accreditation/2004_Conditions.aspx.

Attendance

Attending classes is a basic responsibility of every USC student who is enrolled in courses at the School of Architecture. Regular and punctual class attendance is considered an essential part of satisfying the NAAB accreditation requirements therefore attendance will be taken at every class session. A student may miss up to two class sessions without directly affecting their grade and ability to complete the course if they provide an excused absence for any confirmed personal illness/family emergency/religious observance. For each absence over that allowed number, the student’s letter grade is in danger of being lowered up to one full letter grade. Any student not in class within the first 10 minutes is considered tardy, and any student absent for more than 1/3 of the class time can be considered fully absent. If arriving late, a student must be respectful of a class in session and do everything possible to minimize the disruption caused by a late arrival. It is always the student’s responsibility to seek means to make up work missed due to absences. Being absent on the day of a quiz or exam will lead to an “F” for that quiz or exam. Thus missing a quiz drops the final grade by one letter. This is a direct and intentional byproduct of bad attendance.

Academic Conduct

Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Section 11, Behavior Violating University Standards https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions/. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct/.

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the Office of Equity and Diversity http://equity.usc.edu/ or to the Department of Public Safety http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us. This is important for the safety whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. The Center for Women and Men http://www.usc.edu/student-affairs/cwm/ provides 24/7 confidential support, and the sexual assault resource center webpage sarc@usc.edu describes reporting options and other resources.

Support Systems

Students whose primary language is not English should check with the American Language Institute http://dornsife.usc.edu/ali, which sponsors courses and workshops specifically for international graduate students.

The Office of Disability Services and Programs http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html provides certification for students with disabilities and helps arrange the relevant accommodations.

For instructions in an emergency, USC Emergency Information http://emergency.usc.edu/ will provide safety and other updates.
Course Outline

Lecture (one in each Part will have a pop quiz in addition to the lecture)

Part I:

1) August 18, 2020
 Logistics and Handout, Basic Physics of Heat Transfer – (Lechner Ch 3)
 Conduction, Convection, Radiation, MRT, Latent Heat. Physical
 Demonstration w/ Steam Iron.

2) August 20, 2020
 Human Comfort – (Lechner Ch 4)
 Metabolic mechanisms and resultant Human Comfort ranges, Relative
 Humidity, condensation problems. Introduce Olgyay and Psychrometric
 Charts. Introduce Murray’s Psychrometric tutorial in the first page of the
 Psychrometric Chart.
 Reference Tutorial at BPAC

3) August 25, 2020
 Climate, Building as Organisms (Lechner Ch 5.1 – 5.8a)
 Climate zones, climate plots on Olgyay and Psychrometric Charts, internal
 loads, skin to volume ratio, building balance point temperatures. Introduce
 Climate Consultant.
 Climate consultant tutorial - https://www.youtube.com/watch?v=7pxpmdZptDM
 Download Climate Consultant for Mac and Windows - http://www.energy-design-
 tools.ucla.edu/climate-consultant/request-climate-consultant.php
 Reference tutorial at BPAC http://sustainabilityworkshop.autodesk.com/buildings/climate-
 analysis

4) August 27, 2020
 Solar Position – (Lechner Ch 6)
 altitude, azimuth, declination, shading masks.
 Introduce MBS and Climate Consultant sunpath apps and Sunpath visualization apps for
 mobile device
 (Sun Seeker 3d augmented reality viewer, iOS and android)
 Demonstrate Solar Tool.

5) September 1, 2020*
 Solar Design – (Lechner Ch 9)
 fin and overhang shadows, profile angle.
 Demonstrate complete building in HEED

6) September 3, 2020*
 Calculations I – (Lechner Ch 15)
 q_c, q_n, Degree Days & Design Days
7) September 8, 2020*
Calculations II - (Lechner Ch 15, Grondzik 7.2)
temperature gradients, condensation, infiltration Q, q_i

8) September 10, 2020*
Calculations III – (Lechner Ch10)
ETD, q_r, Demonstrate thermal mass in HEED or Sefaira.

Pop Quiz 1 (given at an earlier date, unannounced)

Part II:

9) September 15, 2020
Lessons from Other Cultures I – (Lechner 5.8b-5.9)
Cold & Temperate Indigenous Strategies.

10) September 17, 2020
Lessons from Other Cultures II – (Lechner 5.8b-5.9)
Hot Arid & Hot Humid Indigenous Strategies.

September 22, 2020
1ST PRELIMINARY EXAM (MIDTERM), covers lectures 1 – 8 will take the entire class period (date may be changed, based on studio reviews)

11) September 24, 2020
Trombé, super insulated, double envelope, roof pond, earth sheltered
Climate Consultant, suggested strategies and Arch 2030 palette examples
http://architecture2030.org/programs/2030-palette/
http://www.2030palette.org/

12) September 29, 2020
Active Solar Thermal – (Lechner 8.20 – 8.26)
Collector types, Domestic Hot Water, Space Heating

13) September 31, 2020*
More Active Systems –(Lechner 8.2 – 8.18)
Photovoltaics, BIPV, principles and examples

14) October 6, 2020*
Wind Systems and Community Scale Solar Systems - (Lechner 2.18, 3.21)
wind generation: individual scale and community scale, Solar One, cogeneration

15) October 8, 2020*
Planning & Zoning – (Lechner 11.4 - 11.6, USC MBS papers)
Shadow plots, Solar access, solar envelopes, Ralph Knowles
16) October 13, 2020*
Alternate Architecture and Lifestyles – (Lecture references)
Amish, Earthship, Arc, Nader Khalili, BedZED

Pop Quiz 2 (given at an earlier date, unannounced)

Part III:

17) October 15, 2020
Global Warming –
http://climate.nasa.gov/causes/
http://architecture2030.org/buildings_problem_why/

18) October 20, 2020
Energy Codes: Title 24, BEPS, HEED
http://www.energy.ca.gov/title24/,
http://www.dgs.ca.gov/dsa/Programs/progCodes/title24.aspx,
http://www.bsc.ca.gov/codes.aspx

October 22, 2020
2ND PRELIMINARY EXAM, NOVEMBER 14 covers lectures 10 – 16

19) October 27, 2020
Sustainability Metrics and Examples
LEED, Architecture 2030, BREEAM, Oberlin Lewis Center, Bullitt Center

20) October 29, 2020
COVID-19, WELL Buildings, NZE, PassivHaus
Additional considerations, examples of buildings’ success and/or failure

21) November 3, 2020*
HVAC I
Plant & distribution types (VAV etc.) – (Lechner Ch 15, Sidebox 16.22)

22) November 5, 2020*
HVAC II – (Lechner Ch 16, esp 16.15)
Duct Sizing

23) November 10, 2020*
HVAC III – (ASHRAE Handbook of Fundamentals (I-P), 2013)
Friction Loss & Fan Sizing

24) November 12, 2020*
Review

*Pop Quiz 3 (given at an earlier date, unannounced)
Final Examination: Thursday, November 19, 8-10 a.m.