ITP 415 3D Design and Prototyping
Units: 2
Spring 2019 – Tuesdays/Thursdays 1pm-2:50pm

Location: KAP 267
Course notes and resources on Blackboard.usc.edu.

Instructor: Lance Winkel
Office: OHE 530 H
Office Hours: Tuesdays / Thursdays 8am-10am, 2-3pm
Contact Info: winkel@usc.edu, 213.740.9959.
I check email daily and will reply within 24 hours.

Teaching Assistant:
Office: Physical or virtual address
Office Hours:
Contact Info: Email, phone number (office, cell), Skype, etc.

IT Help: Group to contact for technological services, if applicable.
Hours of Service:
Contact Info: Email, phone number (office, cell), Skype, etc.
Course Description
Collaboratively explore advanced modeling and CAD toolsets along with 3D printing and prototyping technologies working alongside engineers and marketing experts to create market-ready functional prototypes.

Learning Objectives
Explore the range of 3D printing and prototyping technologies, and their application in modern industrial, design, and creative fields. Apply iterative design principles, CAD, and modeling tools for visualization, ideation, and prototyping via additive manufacturing platforms. Explore printing technologies, base materials, and their applications. Understand how 3D modeling and design techniques are applied for manufacturing and product development. Successful modeling methodologies, topologies for exporting to printing, measurement techniques, and manufacturing tolerances. Simulate a complete product development cycle in a team-based capstone collaboration between marketing and electrical engineering students to design a functional prototype product.

Prerequisite(s): ITP 215 (Prerequisite can be waived for certain CAD or 3D modeling experience at instructor’s discretion based on demonstrated work. Contact Instructor at winkel@usc.edu)

Co-Requisite(s): None.

Concurrent Enrollment: None.

Recommended Preparation: Understanding of any 3D Modeling or CAD software package

Course Notes
Lecture slides, notes, and course resources will be posted on Blackboard.usc.edu.

Technological Proficiency and Hardware/Software Required
Understanding of either Mac or Windows operating systems and general software use. Autodesk provides free academic licenses of the Maya and Fusion 360 software that we will be using for this course. Adobe Cloud provides discounted academic accounts but is not required if using lab computers. Formlabs offers their PreForm 3D staging software free from their website. SolidWorks and other software packages may be useful but are not required. ITP offers Open Labs which are posted at itp.usc.edu. ITP also offers remote desktop access for students enrolled in ITP courses. Instructions will be posted on Blackboard.usc.edu.

Required Readings and Supplementary Materials
Recommended:
Course slides are available on Blackboard.usc.edu

Autodesk Maya Online Documentation at knowledge.autodesk.com
Lynda.com via Blackboard.usc.edu
Learning Resources for other tools like V-Ray, Preform, and Houdini can be found on Linda or at their specific sites:
V-Ray https://www.lynda.com/V-Ray-training-tutorials/1173-0.html
Houdini https://www.sidefx.com/learn/collections/quickstart-houdinis-interface/

Description and Assessment of Assignments
Consult the Assignment posting on Blackboard.
Grading Breakdown

<table>
<thead>
<tr>
<th>Assignment/Grade Item</th>
<th>Assignment Name/Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>Custom Lego</td>
<td>10</td>
</tr>
<tr>
<td>W2_3</td>
<td>Team Designs Rough</td>
<td>15</td>
</tr>
<tr>
<td>W3_4</td>
<td>Team Designs Unbiased</td>
<td>30</td>
</tr>
<tr>
<td>W5</td>
<td>CAD Enclosure</td>
<td>15</td>
</tr>
<tr>
<td>W6</td>
<td>Embedded Detail</td>
<td>10</td>
</tr>
<tr>
<td>W7_12</td>
<td>Team Design Finished Printable</td>
<td>50</td>
</tr>
<tr>
<td>W8</td>
<td>Precision Measurement</td>
<td>10</td>
</tr>
<tr>
<td>W9</td>
<td>Buses and Connections</td>
<td>10</td>
</tr>
<tr>
<td>W12_14</td>
<td>Print Finish and Cleanup</td>
<td>20</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Final Exam</td>
<td>As per Schedule of Classes</td>
<td>30</td>
</tr>
<tr>
<td>Peer Review Assessment</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Participation</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>250</td>
</tr>
</tbody>
</table>

Grading Scale (Example)

Course final grades will be determined using the following scale:
- A 95-100
- A- 90-94
- B+ 87-89
- B 83-86
- B- 80-82
- C+ 77-79
- C 73-76
- C- 70-72
- D+ 67-69
- D 63-66
- D- 60-62
- F 59 and below

Assignment Rubrics

Assignment details and grading rubric will be posted along with the assignment as it is posted. Students with questions are encouraged to attend office hours for critique and to make sure they are understanding the scope of the assignments as detailed.

Assignment Submission Policy

All homework will be submitted on Blackboard. Detailed instructions and resources for each assignment will be posted on Blackboard along. http://blackboard.usc.edu

Grading Timeline

Grades will be posted within a calendar week after the submission due date.

Additional Policies

- Make-up policy for exams: To make up for a missed exam, the student must provide a satisfactory reason (as determined by the instructor) along with proper documentation. Make-up exams are generally only offered in emergency situations.
- Before logging off a computer, students must ensure that they have saved any work to either a USB drive or a service such as Dropbox. Any work saved to the computer will be erased after restarting the computer. ITP is not responsible for any work lost.
• ITP offers Open Lab use for all students enrolled in ITP classes. These open labs are held beginning the second week of classes through the last week of classes. Hours are listed at:
http://itp.usc.edu/labs/.
Course Schedule: A Weekly Breakdown

This is the anticipated course lesson plan and will be subject to change based on capstone production needs

Week 1 – Introductions

Day 1 KAP267
Survey of students modeling, CAD, and/or 3D animation experience
Overview of course plan and objectives
Sample previous capstone work.
In class design challenge

Day 2 KAP267
Understanding 3D Geometry
Review of fundamental 3D concepts 3D vs. CAD
Object creation workflow
Defining units and scale
Planning a design process
Constructing object primitives to scale and with accuracy
Duplication and arrayed duplication
Grid control. Snapping to grids, points, curves, and constraints

Reading
Manufacturing Processes for Design Professionals – Part 1
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment/Project
W_1 – Custom Lego (10 points): Lego Design Challenge. Design and build a custom Lego piece of your own design that conforms to the Lego design specification. It must interface with other Lego pieces and according to the Lego design specification in at least three locations or dimensions. Curvilinear surfaces should be built using NURBS curves and converted to polygons or be tessellated to a proper level of subdivisions so that printable models do not show facets.

Week 2 – Basic Polygon Modeling

Day 1 Combined Classes
Initial Presentations by design faculty
Goal setting and scheduling

Day 2 Combined Classes
Meeting your interdisciplinary team
Identifying project problems
Needs / Wants / and Desires

Reading
Manufacturing Processes for Design Professionals – Part 1
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment/Project
W2_3 – Team Designs Rough (15 points): Based on initial team meetings design three (3) rough concepts for production team brainstorming. These can be in drawn form or 3D Visual development reference for similar products.

Week 3 – Intermediate Polygon Modeling and Clean up

Day 1 KAP267
Understanding 3D geometry
Modeling workflows for Polygons
Additive vs. Subtractive Tools
Mesh editing
Combining, merging, and sewing up polygon meshes
Understanding two-manifold vs. non-manifold geometry
Identifying, predicting, and fixing non-manifold geometry
Freezing transforms and deleting history
Exporting geometry

Day 2 KAP267

Best Practices for constructing printable polygon meshes
Modeling for Form, Function, and Style
Fundamental Structure vs. Ornamentation
Making an object printable
Laying out a simple model on a stage for print.
Hollow forms and the importance of reducing volume
Cost of size, cost of volume, cost of detail, cost of time

Reading
Manufacturing Processes for Design Professionals – Part 2
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment/Project
W3_4 – Team Designs Unbiased (30 points): Refine the three rough concepts so they are ready to present for marketing analysis. Each concept should be at an equal qualitative level to provide unbiased evaluation and input to the production team.

Week 4 – Intermediate Modeling with NURBS

Day 1 KAP267

Understanding NURBS
NURBS Surfaces advantages
Similarities and differences between NURBS and CAD drawings
Curve and surface construction
Clean and uniform topology
Best Practices for NURBS
Illustrator, IGES, and other import/export pipelines

Day 2 Combined Classes

Rough Concept Pitches for faculty approval
Changes and Revisions until approval given

Reading
Manufacturing Processes for Design Professionals – Part 2
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment
W5 – CAD Enclosure (15 points): Using a CAD program, either Solidworks or Fusion 360, build an enclosure made out of two parts that close around a defined space. A box, a two-part iPhone case, or other device.

Week 5 – Advanced Surfacing with NURBS

Day 1 KAP267

Modeling workflows for NURBS and Polygons
Conversion techniques
NURBS to Polygons
Polygons to NURBS
Subdivision surfaces
Best practices for geometry conversion
Texturing coordinates
Preserving UV texturing coordinates throughout conversion

Day 2
KAP 267
Design only critiques
Uniform presentation material prep
Renders and breakdowns for capstone teams

Reading
Manufacturing Processes for Design Professionals – Part 3
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment
W6 – Embedded Detail (10 points): Using a combination or multiple combinations of the tools and techniques presented in class, create a ring, small bracelet, or other jewelry sized object with embedded or complex relief detail. NURBS text, ZBrush or Mudbox driven mesh data, or other processes can be used to create the detail. Clean and export it for printing.

Week 6 – Accurate Measurement and Part Negatives

Day 1
KAP 267
Modeling workflows for NURBS and Polygons
Conversion techniques
NURBS to Polygons
Polygons to NURBS
Subdivision surfaces
Best practices for geometry conversion
Texturing coordinates
Preserving UV texturing coordinates throughout conversion

Day 2
Combined Classes
Design team presentations for 2D/3D Concepts

Reading
Manufacturing Processes for Design Professionals – Part 3
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment
Complete CAD Enclosure and Embedded Detail projects.

Week 7 – Modeling for design and production

Day 1
Moving Parts and Articulation
Hinges
Ball and sockets
Flexibility and elasticity
Locks, bolts, and fasteners
Threaded (taps and dies)
Interfacing, support, and reinforcement

Day 2
Form and function
Visualizing the assembly process
Complex interactions and motorizations
Creating a part negative

Reading
Manufacturing Processes for Design Professionals – Part 4
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment

W7_12 – Team Design Finished Printable (50 points): Based on feedback and group analysis, begin developing final concept into a workable / printable 3D product. Any and all necessary tools should be utilized. Work with product marketing and engineering teams to evolve the design into a completed product prototype for printing. Finished Printable files due Week 12.

Week 8 – Embedding detail

Day 1

Creating Text in Maya the proper way (NURBS Curves, surface lofts, conversion to polygon)
Painterly tools (Sculpt Geometry Tool, etc.)
Workflows with other programs (ZBrush, Mudbox, etc.)
Non-linear animation tools
How rigging, shading, dynamics, fluids, and other Maya 3D toolsets can be applied to creating manufacturable and printable objects.

Day 2

Midterm Exam

Reading

Manufacturing Processes for Design Professionals – Part 4
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment

Work with team on Finished Printable.
W8 – Precision Measurement and Part Negatives (10 points): Based on team product feedback, determine engineering parts needs and specifications of those parts. Measure and model negatives for each part in preparation for full production model.

Week 9 – 3D Modeling software vs. CAD

Day 1

How are modeling software packages different from CAD packages
Sketch/drawing based workflows
Similarities and differences between CAD and NURBS
Broad overview of manufacturing techniques
Molding, sculpting, lathing, lofting, welding, cutting, drilling, gluing, etc.

Day 2

An overview of CAD software packages
Introduction to Fusion 360
Drawing based workflow
Drawing constraints
Surfacing operations

Reading

Manufacturing Processes for Design Professionals – Part 5
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment

Work with team on Finished Printable.
W9 – Buses and Connections (10 points): Based on team product feedback, determine assembly and interconnectivity of the parts. Busses for interlocking parts. Range of motion for interlocking or moving features.

Week 10 – 3D Design Fundamentals and Starting a Project
Day 1
The good, the bad, and the ugly of design
Prominent Designers
Franchises
Success stories
Pop culture

Day 2
Early decision making criteria
Knowing the product
Vision vs. Reality
Brainstorming and critique in the early design phase
Group critiques of in-progress projects

Reading
Manufacturing Processes for Design Professionals – Part 5
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment
Work with team on Finished Printable. Based on team product feedback, make changes and necessary adjustments.

Week 11 – Starting a Production
Day 1
Early decision-making criteria
Knowing the product
Vision vs. Reality
Scale and cost
Calculating the total cost
Tolerances
Initial scene set-up
Roughing in the model

Day 2
Structural integrity
Range of motion
Progress checks and group critiques of in-progress projects

Reading
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment
Work with team on Finished Printable. Based on team product feedback, make changes and necessary adjustments. Fully cleanup and refine the model and arrive at model consensus and sign off by the team and faculty for final printing.

Week 12 – Prototyping and Printing Technologies
Day 1
Project production, planning, and critique
History of 3D Printing
Overview of 3D Printing technologies
Selective Laser Sintering (SLS)
Direct Metal Laser Sintering (DMLS)
Fused Deposition Modeling (FDM)
Stereolithography (SLA)
Laminated Object Manufacturing (LOM)
Electron Beam Melting (EBM)
3D Printing (3DP)

Day 2
Project production, planning, and critique
Final cleanup and processing of files for printing. This is the due date for files that are of a printable scale to be considered for printing!

Reading
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment
W12_W14 - Print Finish and Cleanup (20 points): Cleanup and prepare print files for Team Presentation Week 15.

Week 13 – Manufacturing and Molding

Day 1
Project production, planning, and critique
Vacuum forming
Resin casting
Injection Molding
Terms and standards for injection molding systems
Printing Resolutions and Tolerances
Materials Properties (Temperature, Flexibility, Strength, Brittleness)

Day 2
Project production, planning, and critique
Planning for injection molding
3D Printing for injection molding

Reading
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment
Continue cleaning up and preparing print files for Team Presentation Week 15.

Week 14 – Product Visualization

Day 1
Project production, planning, and critique
Workflows for printing
Software and Drivers
Formats for Printing (SLA, OBJ, CAD, etc.)

Day 2
Project production, planning, and critique
Cleanup and airtight modeling
Post and Export

Reading
Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
Linda.com tutorials as necessary to assist the project

Assignment
Continue cleaning up and preparing print files for Team Presentation Week 15.

Week 15 – Print Cleaning and Final Presentations

Day 1
Final Project production, planning, and critique
Print Lab setup
Loading models and arranging print stage

Day 2

- Final Project production, planning, and critique
- Removing support material
- Special topics
- Remaining time will be Final Exam Study Session
- Begin Final Presentations if already complete

Reading

- Autodesk Maya Help, Online Resources, and tutorials as necessary to assist the project
- Linda.com tutorials as necessary to assist the project

Assignment

- Critiques and Presentations in class. Printing and other special topics.
- See Blackboard for details and notes for Final Exam

Final Exam – (See Schedule of Classes)

- Multiple choice
- Bring a pencil
- Arrive early

This is a reproduction of the Capstone Shared Milestones for Spring 2019 and will be subject to change.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/8</td>
<td>Individual Classes</td>
<td>1/10</td>
<td>Individual Classes</td>
</tr>
</tbody>
</table>
| 2 | 1/15 | **Fertitta Hall, Room 322**
ITP, EE, MKT introductions.
Course and MKT Intro (Therese);
EE Intro and Project Specs (Allan);
Design Principles (Lance) | 1/17 | **Fertitta Hall, Room 322**
Meet your interdisciplinary team!
Team Building and class competition
Teams: Identify project problems/needs and begin brainstorming concepts.
Teams choose brand interests. |
| 3 | 1/22 | Individual classes | 1/24 | **Fertitta Hall, Room 322**
Brainstorming continues. Define 3 rough concepts for approval next week. |
| 4 | 1/29 | Individual classes | 1/31 | **Fertitta Hall, Room 322**
Rough Concept Approvals/Team with all Professors |
| 5 | 2/5 | Individual classes | 2/7 | **Fertitta Hall, Room 322**
Teams: Finalize 3 Concepts for Testing |
| 6 | 2/12 | Individual classes | 2/14 | **Fertitta Hall, Room 322**
ITP team presents initial 2D/3D concepts. |
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 7 | 2/19 | Individual classes | 2/21 | **Fertitta Hall, Room 322**
ITP team completes final 2D concepts for testing.
TBD-Intellectual Property Guest Speaker**
| EE: Identify universal requirements. |
| 8 | 2/26 | Individual classes | 2/28 | **Fertitta Hall, Room 322**
MKT teams present key findings from concept testing. Teams complete Scoring Model and implications for final concept definition. |
| MKT: Concept Testing begins |
| 9 | 3/5 | **Fertitta Hall, Room 322**
Final Concept Definition
Sign Product Protocol document | 3/7 | Individual Classes |
| MKT: Concept Testing results
EE: Identify final requirements
Teams: Complete Scoring Model |
| 10 | 3/12 | Spring Break! | 3/14 | Enjoy! |
| 11 | 3/19 | Individual classes | 3/21 | **Fertitta Hall, Room 322**
Project status and brainstorm names
Final Presentation Overview |
| EE: Final estimated product specs and non-available components
ITP: Complete CAD files
Developing final concept |
| 12 | 3/26 | Individual classes | 3/28 | **Teams #1-#3 in OLIN 240**
Teams #4-5 in KAP 267
Circuit Board Lab & 3D Printing Process
At 2:40, students switch to other location |
| ITP: CAD /printable models due for printing |
| 13 | 4/2 | Individual classes | 4/4 | Individual Classes |
| ITP: Model printing renders |
| 14 | 4/9 | Individual classes | 4/11 | **Fertitta Hall, Room 322**
Final Team Meeting & Presentation Prep |
| Presentation Preparation
ITP: 3D Models & Renderings |

Syllabus for COURSE ID, Page 12 of 5
Statement on Academic Conduct and Support Systems

Academic Conduct
Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards” [https://policy.usc.edu/scampus-part-b/]. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, [http://policy.usc.edu/scientific-misconduct].

Support Systems
Student Counseling Services (SCS) - (213) 740-7711 – 24/7 on call
Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention. [https://engemannshc.usc.edu/counseling/]

National Suicide Prevention Lifeline - 1-800-273-8255
Provides free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week. [http://www.suicidepreventionlifeline.org]

Relationship and Sexual Violence Prevention Services (RSVP) - (213) 740-4900 - 24/7 on call
Free and confidential therapy services, workshops, and training for situations related to gender-based harm. [https://engemannshc.usc.edu/rsvp/]

Sexual Assault Resource Center
For more information about how to get help or help a survivor, rights, reporting options, and additional resources, visit the website: [http://sarc.usc.edu/]

Office of Equity and Diversity (OED)/Title IX Compliance – (213) 740-5086
Works with faculty, staff, visitors, applicants, and students around issues of protected class. [https://equity.usc.edu/]
Bias Assessment Response and Support
Incidents of bias, hate crimes and microaggressions need to be reported allowing for appropriate investigation and response. https://studentaffairs.usc.edu/bias-assessment-response-support/

The Office of Disability Services and Programs
Provides certification for students with disabilities and helps arrange relevant accommodations. http://dsp.usc.edu

Student Support and Advocacy – (213) 821-4710
Assists students and families in resolving complex issues adversely affecting their success as a student EX: personal, financial, and academic. https://studentaffairs.usc.edu/ssa/

Diversity at USC
Information on events, programs and training, the Diversity Task Force (including representatives for each school), chronology, participation, and various resources for students. https://diversity.usc.edu/

USC Emergency Information
Provides safety and other updates, including ways in which instruction will be continued if an officially declared emergency makes travel to campus infeasible, http://emergency.usc.edu

USC Department of Public Safety – 213-740-4321 (UPC) and 323-442-1000 (HSC) for 24-hour emergency assistance or to report a crime.
Provides overall safety to USC community. http://dps.usc.edu