

EE527, Net-Centric Power-System Control

Units: 03

Term: Spring 2020 Day: Tu & Th

Time: 5:00-6:20 pm

Location: DEN, OHE 100 D

Instructor: Edmnd Jonckheere

Office: EEB310

Office Hours: Tu & Th, 2:00-4:00 pm

Contact Info: jonckhee@usc.edu (expect response within 48 hours)

(213) 740-4457

Web page: http://ee.usc.edu/~jonckhee

Teaching Assistant/Mentor: Eugenio Grippo (tentative)

Office: TBA

Office Hours: TBA

Contact Info: egrippo@usc.edu

IT Help: Distance Education Network (DEN)

Hours of Service:

Contact Info: dentsc@usc.edu

(213)740-9356

Course Rationale

"Power Grid" is an old technology and one might rightfully ask the question as to what is really novel in the so-called "smart grid." Historically, it was developed for economic reasons: competition in the electricity market to allow consumers to purchase their electricity at the cheapest price. This already had the unforeseeable effect of creating large transport of power across the country, overloading the lines with the potential for blackouts, calling for a *power network analysis*. Another significant attribute of the smart grid is its increasing reliance on renewables, which has the effect of injecting fluctuations in the grid, calling for stochastic analysis. Another problem created by substituting Photo Voltaic Cells (PVCs) for old CO₂ generating turbo-machines is the decrease of inertia in the grid and the resulting more problematic frequency stability, calling for a new *frequency stability control* science. "Smartness" of the grid probably stems for the massive amount of sensors that are currently being deployed, with the problem that the technology grew faster than the theory that could tell ISOs what to do with that data. We will partially answer that question in the *PMU "Big Data" Statistical Decision* part. The unprecedented accuracy of PMU data allows for detection of subtle "abnormalities" in the signal that could indicate such nuisance as tendency towards voltage collapse. But before going through data analysis, there is a need for *SCADA Data Authentication* implemented using *Machine Learning*, as a countermeasure to false data injection.

Course description: Four parts

Part 1 (Power Network Analysis)

The first part of the course will be taught from the "networking" point of view. It is heavily graph-oriented. It will proceed from basic electrodynamics (synchronous generator, transmission lines, loads, adaptation, active & reactive power, power flow equations), from where bus models will be formalized in the context of graph theory—in particular, "resistive networks" together with spectral graph theory (Laplacian operator). This formalization will be geared towards a better understanding of "congestion," interpreted in the sense of line overload and storage element deployment. A betweenness centrality concept able to anticipate congestion will be developed. From a more modern mathematical viewpoint, it will be shown that line overload occurs along negatively curved paths. The impact of fluctuations of renewables (e.g., wind farms) and pricing on congestion will also be addressed.

Part 2 (Machine Learning SCADA Data Authentication)

This part deals with defense mechanisms against (possibly "stealthy") false data injection attacks of the State Estimator (SE). The approach relies on the machine learning technique of "graphical models." A graphical model of the bus phase angles is compared with the actual grid topology and, should a discrepancy be observed, the red flag is raised that some data tampering has happened.

Part 3 (Frequency Stability Control)

Part 3 is centralized around the concept of frequency & voltage stability. We will first review static voltage collapse together with static load modeling and then develop dynamical models based on the well known swing equations, revised to be in line with smart grid technology and its problematic frequency stability. We will unravel the hidden feedbacks in the power grid as an indication that anomalies propagate through the whole grid.

Part 4 (PMU "Big Data" Statistical Decision)

The last part of the course deals with statistical PMU signal analysis. It will be shown that PMU signals are fractal as a result of a load aggregation effect. Most importantly, it will be shown that before a voltage collapse appears imminent, the AR(1) coefficient and Hurst exponents of ARFIMA (Auto Regressinve Fractionally Integrate Moving Average) model of the frequency PMU signal both increase. The increase will be statistically confirmed using the Kendall tau and the Jonckheere-Terpstra rank correlation. Finally, the increase of the Hurst exponent will be put in the time-sensitive context of Change Point Detection, that is, a compromise between detection dealy and False Alarm Rate.

Learning Objectives

In summary, the "smart grid" is a multi-disciplinary venture and this course only claims to cover some of its aspects. Nevertheless, we will try to make this course of relevance to control, computer engineering, and power students. At the end of the semester, students will be able to get the symbiotic picture of the "smart" grid.

Prerequisite(s): Basic linear feedback control (EE482); good working knowledge of linear algebra (EE510); Linear System Theory (EE585) is not a "must," but is a "recommended preparation." Some familiarity with nonlinear systems (especially the describing function also referred to as equivalent linearization) would be helpful, but not required, as the basic nonlinear theory will be covered in a self-sufficient manner.

Software, Matlab, etc. Familiarity with Matlab will be assumed. In the course of the semester, MATPOWER will be reviewed and students will be required to become familiar with it and utilize it in homework assignments

Course Notes

Grading Type: letter grade

The course is Web-Enhanced (Blackboard).

Copies of lecture slides and other class information will be posted on Blackboard.

Classroom utilization of **Matlab and Mathpower** will be used as multimedia/technology-enhanced learning strategies.

Technological Proficiency and Hardware/Software Required

Students will be assumed to be familiar with Matlab.

Required Readings and Supplementary Materials

It is difficult to find a textbook that covers all that has to be covered, especially since this class deals with topics that have only very recently taken shape. Nevertheless a *recommended* text that comes close to the spirit of this class is

 Romeo Ortega, Antonio Loria, Per Johan Nicklasson, and Hebertt Sira-Ramirez, Passivity Based Control of Euler-Lagrange Systems, Springer, 1998. ISBN: 1-85233-016-3. (This is a very good book on physically motivated Lagrangian control, especially relevant to Week 3.)

Furthermore, the instructor will provide a bunble of notes & papers that cover fairly well the topics of the class.

Additional (suggested) readings:

- J. A. Hall, Strategic environmental research and development program statement of need for FY08; Sustainable infrastructure (SI) new start; Scalable power grids that facilitate the use of renewable energy technologies, November 2006, *Department of Defense*, SON Number SISON-09-4, http://www.serdp.org/funding/.
- Author withheld, Generating random topology power grids,
 https://wiki.iti.uiuc.edu/pub/Main/ZhifangWang/Hicss41 RandTopo\ Wang\ v2.pdf.
- David L. Pepyne, "Topology and cascading line outages in power grids," *Journal of Systems Science and Systems Engineering*, volume 16, number 2, June 2007, pages 202-221, DOI 10.1007/s11518-007-5044-8.
- Eric J. Lerner, "What's wrong with the electric grid?" *The Industrial Physicist*, volume 9, Pages 8-13, October-November 2003.

- P. Crucitti and V. Latora and M. Marchiori, "A topological analysis of the Italian electric power grid," *Physica A*, volume 338, pages 92-97, 2004.
- G. L. Doorman and T. Holtedahl and H. S. Woldstad, "Large scale power exchange in the greater Mekong subregion," *International Conference on Electric Supply Industry in Transition: Issues and Prospects for Asia*, Thailand, 2004, January 14-16.
- E.A. Jonckheere, "Lagrangian theory of large scale systems," (invited paper), *European Conference on Circuit Theory and Design*, The Hague, the Netherlands, August 25-28, 1981, pp. 626-629.
- H. Sedghi and E. Jonckheere, ``On the conditional mutual information in the Gaussian–Markov structured Grids," *Information and Control in Networks,* G. Como, B. Bernhardsson, and A. Rantzer, Editors, *Lecture Notes in Control and Information Sciences,* Springer International Publishing, Vol. 450, pp. 277-297, 2014. (ISBN 978-3-319-02149-2, URL http://dx.doi.org/10.1007/978-3-319-02150-8
 9, available at http://eudoxus2.usc.edu.
- H. Sedghi and E. Jonckheere, "Statistical structure learning to ensure data integrity in smart grid," *IEEE Transaction on Smart Grid*, Volume 6, Number 4, pp. 1924-1933, 2015.
- R. Banirazi and E. Jonckheere, ``Geometry of power flow in negatively curved power grids: Toward a smart transmission system," 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, December 15-17, 2010, pp. 6259-6264.
- H. Sedghi and E. Jonckheere, "Statistical structure learning of smart grid for detection of false data injection," *IEEE power and Energy Society General Meeting*, Vancouver, BC, Canada, July 21-July 25, 2013, pp. 1-5.
- P. Bogdan, E. Jonckheere, and S. Schirmer, "Multi-fractal geometry of finite networks of spins," Chaos, Solitions & Fractals, vol. 103, pp. 622-631, Oct. 2017.
- E. Grippo and E. Jonckheere, ``Effective resistance criterion for negative curvature: application to congestion control," *IEEE Multi-Conference on Systems and Control,* Buenos Aires, Argentina, September 19-22, 2016, pp. 129-136.
- L. Shalalfeh and E. Jonckheere, "Load aggregation effect in the power grid," *IEEE Conference on Decision and Control*, Las Vegas, NV, December 2016, pp. 5793-5798.
- L. Shalalfeh, P. Bogdan and E. Jonckheere, "Kendall's tau of frequency Hurst exponent as blackout proximity margin," *IEEE International Conference on Smart Grid Communications*, November 06-09, 2016, Sydney, Australia.
- L. Shalalfeh and E. Jonckheere, "The Existence of a Voltage Collapse Solution in the Static-Dynamic Gap," 2016 American Control Conference, Boston, USA, July 6-8, 2016, pp. 4126-4131.
- L. Shalalfeh, P. Bogdan, and E. Jonckheere, "Evidence of long-range dependence in power grid," Power and Energy Society General Meeting (PESGM), Boston, USA, July 17-21, 2016.
- L. Shalalfeh and P. Bogdan and E. Jonckheere, "Modeling of PMU data using ARFIMA models," *Clemson University Power System Conference*, Charleston, SC, Sept. 2018.
- J. Sia and E. Jonckheere and L. Shalalfeh and P. Bogdan, "PMU Change Point Detection of imminent voltage collapse and stealthy attacks," *IEEE CDC*, Miami Beach, FL, Dec. 2018, pp. 6812-6817.

Description and Assessment of Assignments

Students will be assigned a homework every other week. Homework will consist in solving "textbook" problems and will include a "research-oriented" problem to stimulate and probe students' creativity. There will be one midterm and one final.

Grading Breakdown

Assignment	Points	% of Grade
participation		5%
homework		20%
midterm		35%
final or project (TBD)		40%
TOTAL	C	1

Assignment Submission Policy

Homework to be submitted two weeks after assignment.

Additional Policies

Late assignments will be penalized (unless valid, e.g., medical, reason).

Attendance of the lectures is expected.

Matlab and Mathpower will be used in the classroom.

Course Schedule: A Weekly Breakdown

	Topics/Daily Activities	Readings	Homework/ Due Dates
	FIRST PART: Power Network Analysis		
Week 1 1/13-1/17	The concept of network. Information network, sensor networks, telephone network, power grid, bus model, transportation network. The concepts of "flow" and "commodity;" multi-commodity flow, etc.	G. L. Doorman and T. Holtedahl and H. S. Woldstad, "Large scale power exchange in the greater Mekong subregion," International Conference on Electric Supply Industry in Transition: Issues and Prospects for Asia, Thailand, 2004, January 14-16.	
Week 2 1/20-1/24	Introduction to the power grid elements: generation, transmission, distribution. The deregulation issue and large-scale power transmission. The concept of "renewables" (wind farms, photovoltaic cells).	Eric J. Lerner, "What's wrong with the electric grid?" The Industrial Physicist, volume 9, Pages 8-13, October-November 2003. J. A. Hall, Strategic environmental research and development program statement of need for FY08; Sustainable infrastructure (SI) new start; Scalable power grids that facilitate the use of renewable energy technologies, November 2006, Department of Defense, SON Number SISON-09-4, http://www.serdp.org/funding/.	
Week 3 1/27-1/31	Review of some electrodynamics (depending on students' background): Tellegen's theorem; complex power, active power, and reactive power. Lagrange-Hamilton formulation of circuits. Variational interpretation of active and reactive power.	E.A. Jonckheere, "Lagrangian theory of large scale systems," (invited paper), European Conference on Circuit Theory and Design, The Hague, the Netherlands, August 25-28, 1981, pp. 626-629. Romeo Ortega, Antonio Loria, Per Johan Nicklasson, and Hebertt Sira-Ramirez, Passivity Based Control of Euler-Lagrange Systems, Springer, 1998. ISBN: 1-85233-016-3.	Homework #1 assigned
Week 4 2/3-2/7	Power flow equations. Solving nonlinear power flow equations using		

	Newton-Raphson		Ι
	iteration.		
Week 5 2/10-2/14	Classical (non- topological) graph topology. Degree distribution, Scale-Free graphs, Small-World graph model of power grid. Adjacency matrix, graph Laplacian. Linear DC power flow models. Virtual resistive grids. Resistive networks, Laplacian, effective resistance. Concept of graph betweenness centrality and its relation to "stress points" in the grid	P. Crucitti and V. Latora and M. Marchiori, "A topological analysis of the Italian electric power grid," <i>Physica A</i> , volume 338, pages 92-97, 2004. R. Banirazi and E. Jonckheere, "Geometry of power flow in negatively curved power grids: Toward a smart transmission system," <i>49th IEEE Conference on Decision and Control (CDC)</i> , Atlanta, GA, December 15-17, 2010, pp. 6259-6264. E. Grippo and E. Jonckheere, "Effective resistance criterion for negative curvature: application to congestion control," <i>IEEE Multi-Conference on Systems and Control</i> , Buenos Aires. Argentina. September 19-	Homework #1 due, Homework#2 assigned.
		Aires, Argentina, September 19- 22, 2016, pp. 129-136.	
	SECOND PART:	22, 2010, ρβ. 129-130.	
	Machine Learning		
	SCADA Data		
	Authentication		
Week 6 2/17-2/21	State Estimators (SEs) and SCADA		
Week 7 2/24-2/28	Phasor Measurement Units (PMUs) deployment. Time stamp by Global Positioning System (GPS). Networked PMUs.		
Week 8 3/02-3/06	Notion of structure learning, machine learning, L1 and regularizer.	H. Sedghi and E. Jonckheere, "Statistical structure learning of smart grid for detection of false data injection," <i>IEEE power and Energy Society General Meeting</i> , Vancouver, BC, Canada, July 21- July 25, 2013, pp. 1-5.	Homework #2 due
Week 9 3/09-3/13	Detection of false data injection by structure learning of grid graph using Conditional Covariance Test (CCT). Gaussian versus non Gaussian property of state estimator and	H. Sedghi and E. Jonckheere, "On the conditional mutual information in the Gaussian— Markov structured Grids," Information and Control in Networks, G. Como, B. Bernhardsson, and A. Rantzer, Editors, Lecture Notes in	Midterm week? (Week before Spring recess 03/16-03/20)

Week 10 3/23-3/27	Application of structure learning to detect	Control and Information Sciences, Springer International Publishing, Vol. 450, pp. 277- 297, 2014. (ISBN 978-3-319- 02149-2, URL http://dx.doi.org/10.1007/978- 3-319-02150-8_9, DOI 10.1007/978-3-319-02150-8_9, available at http://ee.usc.edu/~jonckhee H. Sedghi and E. Jonckheere, ``Statistical structure learning to	
3/23-3/21	stealthy deception attack.	ensure data integrity in smart grid," <i>IEEE Transaction on Smart Grid,</i> Volume 6, Number 4, pp. 1924-1933, 2015.	
	THIRD PART: Frequency		
	Stability Control		
Week 11 3/30-4/03	Static load models and static voltage collapse scenario ((P,V) diagram). Nonlinear, frequency-dependent load models in the sense of Berg, significance of the non-integer exponents of the frequency in Berg model, "dynamic" Hill model, comparison between Berg and Hill models, the static-dynamic gap, describing function ("equivalent gain") load models. Revision o fthe swing equations.	L. Shalalfeh and E. Jonckheere, "The Existence of a Voltage Collapse Solution in the Static-Dynamic Gap," 2016 American Control Conference, Boston, USA, July 6-8, 2016, pp. 4126-4131.	Homework #3 assigned
Week 12 4/6-4/10	Hidden control feedbacks in the power grid. Simple one- generator, one-line, one-load model; many- generator, many-line, many-load multivariable models. Callier-Desoer decomposition of the grid control graph in strongly connected components and application to load aggregation effect. Application of modern multivariable control theory to voltage	L. Shalalfeh and E. Jonckheere, "Load aggregation effect in the power grid," <i>IEEE Conference on Decision and Control,</i> Las Vegas, NV, December 2016, pp. 5793-5798.	

	collapse. Frequency disruptive and non- frequency disruptive		
Week 13 4/13-4/17	voltage collapse. Fractional dynamics model of grid dynamics FOURTH PART: PMU		Homework #3 due, Homework#4 assigned.
	"Big Data" Statistical Decision		
Week 14 4/20-4/24	Real-time fractal analysis of PMU signals. Detrended Fluctuation Analysis. Auto- Regressive Fractionally Integrated Moving Average Models (ARFIMA). AR(1) coefficient and Hurst exponent. Kendall tau and Jonckheere-Terpstra statistical confirmation of increase of AR(1) and Kendall tau in anticipation of forthcoming blackout.	L. Shalalfeh and P. Bogdan and E. Jonckheere, "Modeling of PMU data using ARFIMA models," Clemson University Power System Conference, Charleston, SC, Sept. 2018. L. Shalalfeh, P. Bogdan and E. Jonckheere, ''Kendall's tau of frequency Hurst exponent as blackout proximity margin," IEEE International Conference on Smart Grid Communications, November 06-09, 2016, Sydney, Australia.	
Week 15 4/27-5/21	Change Point Detection	J. Sia and E. Jonckheere and L. Shalalfeh and P. Bogdan, "PMU Change Point Detection of imminent voltage collapse and stealthy attacks," <i>IEEE CDC</i> , Miami Beach, FL, Dec. 2018, pp. 6812-6817.	Last homework #4 due.

Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism – presenting someone else's ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in *SCampus* in Section 11, *Behavior Violating University Standards*https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions/. Other forms of academic dishonesty are equally unacceptable. See additional information in *SCampus* and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct/.

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the *Office of Equity and Diversity* http://equity.usc.edu/ or to the *Department of Public Safety* http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us. This is important for the safety whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. *The Center for Women and Men* http://www.usc.edu/student-affairs/cwm/ provides 24/7 confidential support, and the sexual assault resource center webpage sarc@usc.edu describes reporting options and other resources.

Support Systems

A number of USC's schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute http://dornsife.usc.edu/ali, which sponsors courses and workshops specifically for international graduate students. The Office Disability Services of and **Programs** http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.htmlprovides_certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency Information http://emergency.usc.edu/will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.