EE 599: Accelerated Computing using FPGAs
Units: 2
Term—Day—Time: Spring 2020, Thu 330-450 (Lecture)
Fri 4-520 (Lab, Discussion)

Location: sites.usc.edu/prasanna/teaching

Instructor: Viktor Prasanna
Office: EEB 200C
Office Hours: TBD
Contact Info: prasanna@usc.edu
(213) 740 4483
sites.usc.edu/prasanna

Teaching Assistant: TBD
Office: Physical or virtual address
Office Hours:
Contact Info: Email, phone number (office, cell), Skype, etc.

IT Help: Contact TA during office hours and via email
Hours of Service:
Contact Info: Email, phone number (office, cell), Skype, etc.
Course Description
Recently, Field Programmable Gate Arrays have become a key computing platform to accelerate applications at data center, cloud and at the “edge”. This course will review the technology and software tools from application acceleration perspective and discuss (application-specific) architectural, software and algorithmic innovations to realize the potential of this technology to optimize latency, throughput and energy efficiency.

Learning Objectives and Outcomes
Understand architecture of FPGAs
Develop application mapping methodologies
Develop performance modeling techniques
Evaluate scalability of designs
Understand techniques for generating IP (intellectual property) cores

Prerequisite(s): EE 457 and CS 570
Co-Requisite(s): course(s) that must be taken prior to or simultaneously
Concurrent Enrollment: course(s) that must be taken simultaneously
Recommended Preparation: EE 451

Technological Proficiency and Hardware/Software Required
Students should have basic understanding of high level programming.

Required Readings and Supplementary Materials
Course will be based on recent research publications and survey articles and vendor data sheets and tools. Details will be provided in the lectures as well as in the discussion sessions. A sample of relevant literature is appended to this.

Description and Assessment of Assignments
The course will be project oriented. Project proposal, presentation and final report are required.
Grading Breakdown

Including the above detailed assignments, how will students be graded overall? Participation should be no more than 15%, unless justified for a higher amount. All must total 100%.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Points</th>
<th>% of Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Lab Assignments</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Project Proposal</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Project Presentation</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Project Final Report</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Project: The focus of the course is in designing accelerators using FPGAs. The project will be focused on specific application areas of interest to the students to identify a problem that needs acceleration, design an application specific architecture, develop scalable parallel algorithm and map it onto a target FPGA device. The project will consist of literature survey, problem definition, solution idea, hardware design and use of software tools to map the design to a FPGA. It will consist of proposal preparation, discussions with the instructor and the TA, present details of the design and implement it and report the resulting acceleration.

Project timeline:
- Week 4: Identifying team members (if required) and project topics
- Week 9: Proposal due (team member, topics and milestone)
- Weeks 14 and 15: Project presentation
- Last day of classes: Final report due

Sample project:
Parallelizing LSTM models on FPGAs with coherent memory.
Identifying opportunities for parallelism, survey of state of the art techniques for kernels and primitives, performance modeling and projected performance. Implementation in VHDL or Verilog, synthesis, place and route results. Summary of latency and throughput performance and energy dissipation.

Project Presentation: The project presentation will be in class presentation by the student or students (if two students collaborate per project). The number of students per project will be decided based on the total size of the class and the available time. The presentation will be approx. 30 mins in duration including time for Q and A. Each team will prepare a power point presentation, approximately 20 slides covering the following: problem definition, prior work, solution proposed, the metrics to be used for evaluation and the expected outcomes of the project.

Grading Scale (Example)
Course final grades will be determined using the following scale
A 95-100
A- 90-94
B+ 87-89
B 83-86
B- 80-82
C+ 77-79
C 73-76
C- 70-72
D+ 67-69
D 63-66
D- 60-62
F 59 and below

Assignment Rubrics
Include assignment rubrics to be used, if any.

Assignment Submission Policy
Describe how, and when, assignments are to be submitted.

Grading Timeline
Project Proposals will be reviewed and returned within 2 weeks. Students requiring additional guidance will be counseled during office hours.

Additional Policies
Add any additional policies that students should be aware of: late assignments, missed classes, attendance expectations, use of technology in the classroom, etc.
Course Schedule: A Weekly Breakdown

Note: L and D refers to lecture and discussion sessions. Discussion sessions will be led by a TA over the first 10 weeks. Instructor will lead both the lecture and discussion sessions during weeks 11-15.

Total number of contact minutes by the instructor = \(10 \times 80 + 5 \times 160 = 1600\) minutes over 15 weeks.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics/Daily Activities</th>
<th>Readings and Homework</th>
<th>Deliverable/ Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction (L) Computing platforms and technology evolution FPGA design flow (D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FPGA basics, architectural characteristics (L) Example design flow, account set up (D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FPGA abstractions and Computational models (L) Example design flow, practice designs (D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Accelerating Dense Algebra (L) HW #1 solution strategies (D)</td>
<td>HW #1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Accelerating FFT (L) FFT design optimization (D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Accelerating Networking (SDN) (L) HW #2 discussion (D)</td>
<td>HW #2</td>
<td>HW #1 due</td>
</tr>
<tr>
<td>7</td>
<td>Accelerating Networking (NFV) (L) IP look up design (D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Accelerating ML Kernels (L) Reg Ex Matching design (D)</td>
<td></td>
<td>HW #2 due</td>
</tr>
<tr>
<td>9</td>
<td>Accelerating ML Kernels (L) Tools for FPGA resource management (D)</td>
<td></td>
<td>Project Proposal due</td>
</tr>
<tr>
<td>10</td>
<td>FPGAs in the Cloud (L) Project discussion, guidelines (D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Project Presentation (L, D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Project Presentation (L, D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Project Presentation (L, D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Project Presentation (L, D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Project Presentation (L, D)</td>
<td></td>
<td>Final report due last day of classes</td>
</tr>
<tr>
<td>FINAL</td>
<td>No final</td>
<td></td>
<td>Date: For the date and time of the final for this class, consult the USC Schedule of Classes at classes.usc.edu/.</td>
</tr>
</tbody>
</table>
Statement on Academic Conduct and Support Systems

Academic Conduct:

Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards” policy.usc.edu/scampus-part-b. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, policy.usc.edu/scientific-misconduct.

Support Systems:

Student Health Counseling Services - (213) 740-7711 – 24/7 on call engemannshc.usc.edu/counseling
Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention.

National Suicide Prevention Lifeline - 1 (800) 273-8255 – 24/7 on call suicidepreventionlifeline.org
Free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week.

Relationship and Sexual Violence Prevention Services (RSVP) - (213) 740-4900 – 24/7 on call engemannshc.usc.edu/rsvp
Free and confidential therapy services, workshops, and training for situations related to gender-based harm.

Office of Equity and Diversity (OED) | Title IX - (213) 740-5086 equity.usc.edu, titleix.usc.edu
Information about how to get help or help a survivor of harassment or discrimination, rights of protected classes, reporting options, and additional resources for students, faculty, staff, visitors, and applicants. The university prohibits discrimination or harassment based on the following protected characteristics: race, color, national origin, ancestry, religion, sex, gender, gender identity, gender expression, sexual orientation, age, physical disability, medical condition, mental disability, marital status, pregnancy, veteran status, genetic information, and any other characteristic which may be specified in applicable laws and governmental regulations.

Bias Assessment Response and Support - (213) 740-2421 studentaffairs.usc.edu/bias-assessment-response-support
Avenue to report incidents of bias, hate crimes, and microaggressions for appropriate investigation and response.

The Office of Disability Services and Programs - (213) 740-0776 dsp.usc.edu
Support and accommodations for students with disabilities. Services include assistance in providing readers/notetakers/interpreters, special accommodations for test taking needs, assistance with architectural barriers, assistive technology, and support for individual needs.

USC Support and Advocacy - (213) 821-4710 studentaffairs.usc.edu/ssa
Assists students and families in resolving complex personal, financial, and academic issues adversely affecting their success as a student.
Diversity at USC - (213) 740-2101
diversity.usc.edu
Information on events, programs and training, the Provost’s Diversity and Inclusion Council, Diversity Liaisons for each academic school, chronology, participation, and various resources for students.

USC Emergency - UPC: (213) 740-4321, HSC: (323) 442-1000 – 24/7 on call
dps.usc.edu, emergency.usc.edu
Emergency assistance and avenue to report a crime. Latest updates regarding safety, including ways in which instruction will be continued if an officially declared emergency makes travel to campus infeasible.

USC Department of Public Safety - UPC: (213) 740-6000, HSC: (323) 442-120 – 24/7 on call
dps.usc.edu
Non-emergency assistance or information.
Sample reading materials

19. Zeng, Hanqing; Zhang, Chi; Prasanna, Viktor K., *Fast Generation of High Throughput Customized Deep Learning Accelerators on FPGAs*, International Conference on ReConFigurable Computing and FPGAs (ReConFig), pp. 1–8, 2017
22. Zhou, Shijie; Kannan, Rajgopal; Yu, Min; Prasanna, Viktor K., *FASTCF: FPGA-based Accelerator for Stochastic-Gradient-Descent-based Collaborative Filtering*, ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp 259–268, 2018