Course Syllabus

Instructor: Dr. Ryan Park
Class Location: OHE 100B
Time: Thursdays, 6:40-9:20 PM
E-Mail: Ryan.S.Park@jpl.nasa.gov
Please include “ASTE581” in the subject.
Course Website: https://courses.uscden.net

Required Text

There is no required textbook for this class.

Prerequisites

ASTE 580 (Orbital Mechanics I)

Course Description

This course covers advanced concepts and methods applicable to practical and realistic astro-
dynamics problems. Topics include: review of 2-body problem, Hamiltonian and Lagrangian
dynamics, linear dynamics, \(N \)-body problem, 3-body problem, Halo orbits, Hills equations,
periodic orbits, stability analysis, orbit uncertainty propagation, basics of estimation, Monte-
Carlo simulation, and basics of optimal control theory. Other topics as time permits.

Grading

- Homework: 40%
- Project progress report: 10%
- Final project: 50%
Final Project

- There is no final exam in this class, but there is a final project.
- The project topic must be related to astrodynamics, e.g., mission design, maneuver design, navigation, etc.
- The final project report (including programs) is due on the last day of the class. The report must be typed and concise. Font size of 10 is preferred.

Same Final Project Topics

- Earth-Mars transfer trajectory with various perturbing forces (e.g., SRP, multi body)
- Formation of lunar relaying satellites
- Halo orbit about the Lagrange points and maintenance
- Multiple asteroid flybys for optimal data coverage
- GEO satellite maintenance
- Passive inclination control for GEO satellites
- Multi-Body Dynamics simulation
- Aerocapture or aerobraking
- Asteroid rendezvous and orbit maintenance
- Multi-body integrator with low-thrust
- Satellite tour problem
- Symplectic integrator
- Very low-Earth orbit design
- Mercury solar sail

Homework Assignments

Note: all assignments are due at 6:40 pm PST (for both DEN and on-campus students). On-campus students must submit before the class starts. DEN students must submit to the DEN office before the class starts. Late homework will not be accepted.
Weekly Schedule

- Week 01 (01/16)
- Week 02 (01/23):
 - Week 03 (01/30): Homework 1 due, Project topic due
 - Week 04 (02/06)
 - Week 05 (02/13): Homework 2 due
 - Week 06 (02/20)
 - Week 07 (02/27): Homework 3 due
 - Week 08 (03/05): Project progress report due
 - Week 09 (03/12): Homework 4 due
 - Week 10 (03/19): No class (Spring Break)
 - Week 11 (03/26): Homework 5 due
 - Week 12 (04/02)
 - Week 13 (04/09): Homework 6 due
 - Week 14 (04/16):
 - Week 15 (04/23): Final report due

Recommended References

