Keck School of Medicine of <mark>USC</mark>

PM 569 Spatial Statistics

Units: 3 Term: Fall 2019 Time: Friday 10am-1pm Location: USC HSC, Soto Building Room 117 Dr. Meredith Franklin Instructor: Office: SSB 202A Office Hours: By Appointment Contact Info: meredith.franklin@usc.edu 323-442-2703 (office)

Course Description

Spatial statistics is a sub-discipline of statistics that includes the analysis of data that are observed on a 2 or 3-dimensional surface. Spatial data arise in almost every field of study--examples include meteorological measurements from weather stations, demographics from the census, and incidence of disease over a particular geographic area.

This course is intended as an introduction to spatial statistics and aims to provide students with the background necessary to investigate geographically represented data. There are numerous research questions involving spatial data, but in this course focus will be placed on methods that are relevant in the fields of public health, environmental science, and social science. Lectures will cover the three main areas of spatial statistics: geostatistical data, lattice (areal) data, and point patterns.

Learning Objectives

The learning objectives of this course are that upon completion, the student should be able to:

- Distinguish different types of spatial data (geostatistical, areal, point process) and understand how spatial autocorrelation plays a role in statistical modeling.
- Use methods introduced in lectures to investigate spatial autocorrelation in example datasets provided as exercises.
- Determine which spatial methods to use to in their own research and implement them using statistical software and geographic information systems.
- Read and discuss new methods in the spatial statistics literature based on an understanding of the basic spatial statistics approaches, principles and main assumptions.

Recommended Preparation: Courses in regression, knowledge of R programming language

Course Notes

Lecture notes presented in class will be posted on Blackboard.

Technological Proficiency and Hardware/Software Required

The course will involve a great deal of computing, primarily in the statistical language R. Students without the computing prerequisite may be allowed to take the course but should be aware that they will need to become familiar with R on their own. Download R at <u>http://www.r-project.org/</u>

There will not be a separate computer lab time for going through examples, but some lecture time will be set aside to go through code and procedures to familiarize students with the implementation of various spatial methods using statistical software (R). We will also introduce ArcGIS. Student licenses are available through the USC Spatial Sciences Institute (<u>https://software.usc.edu/geospatial-software-esri/</u>)

Required Readings and Supplementary Materials

Lecture notes and handouts will be the primary source of information for this course. Several textbooks on spatial data analysis will prove to be useful, but lectures will be primarily based on material presented in the following (Note these are NOT REQUIRED):

- 1) Roger S. Bivand, Edzer J. Pebesma and Virgilio Gómez-Rubio <u>Applied Spatial Data Analysis with</u> <u>*R*, 2nd edition</u> (2013), Springer.
- 2) Lance A. Waller and Carol A. Gotway <u>Applied Spatial Statistics for Public Health Data</u> (2004), John Wiley & Sons.
- S. Banerjee, B. Carlin, and A. Gelfand. <u>Bayesian and Hierarchical Modeling of Spatial Data</u>, 2nd <u>edition</u> (2014), Chapman and Hall. (Advanced)

Description and Assessment of Assignments

Assignments: There will be 6 assignments given throughout the semester. Students may discuss the problems with one another, however, individual solutions must be submitted and copying will not be tolerated. Late assignments will be penalized by 20% for each day past the due date.

Project: The final project will be done individually. A proposal must be submitted one month before the project is due. The project must consist of statistical analysis of a real dataset and a written report in the form of a scientific paper that summarizes the project. The report must have an abstract, introduction, methods, results and discussion.

The project topic is up to the student but should draw from his or her own research. It may also involve data from the census, surveys, simulations or a paper on spatial statistics from the literature.

Grading Breakdown

Assignment	Points	% of Grade
Weekly Reading Assignment and Discussion	5	5
Homework Assignments (6 @ 10% each) 6		60
Final Project	35	35
Proposal		
Report		
Presentation		
TOTAL	100	100

Assignment Submission Policy

Assignments will be due on Fridays as per the schedule below and will be uploaded to the course Blackboard. Late homework assignments will be penalized by 20% for each day past due, and late final projects will not be accepted.

Tentative Course Schedule: A Weekly Breakdown

	Topics/Daily Activities	Deliverable/ Due Dates
Week 1	Introduction, overview of different types of spatial	
August 30	data, introduction to R tools needed for spatial	
	analysis, review of non-spatial regression	
Week 2	Data visualization, mapping, geocoding	HWO
September 6		
Week 3	Geostatistics: variograms and covariance functions	HW 1 Due
September 13		
Week 4	Geostatistics: fitting variogram functions	
September 20		
Week 5	Geostatistics: kriging	HW2 Due
September 27		
Week 6	No class (Dr. Franklin at conference)	
October 4		
Week 7	Geostatistics: inverse distance weighting, spatial	
October 11	smoothing	
Week 8	Areal data: neighborhoods, testing for spatial	HW3 Due
October 18	association	
Week 9	Areal data: global and local tests of association	
October 25		
Week 10	Areal data: CAR and SAR models, inference	HW4 Due
November 1		
Week 11	Point process data: types of spatial patterns, spatial	Final Project Proposal Due
November 8	randomness	
Week 12	Point process data: spatial clustering and testing for	
November 15	clustering	
Week 13	Point process data: models and methods in spatial	HW5 Due
November 22	Epidemiology	
Week 14	Thanksgiving, no class	
November 29		
Week 15	Special topics: Spatio-temporal modeling, Bayesian	HW6 Due
December 6	disease mapping	
Finals Week	Final Project Presentations	Final Paper, Presentation
December 13		Slides Due

Statement on Academic Conduct and Support Systems

Academic Conduct:

Plagiarism – presenting someone else's ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in *SCampus* in Part B, Section 11, "Behavior Violating University Standards" <u>https://policy.usc.edu/scampus-part-b/</u>. Other forms of academic dishonesty are equally unacceptable. See additional information in *SCampus* and university policies on scientific misconduct, <u>http://policy.usc.edu/scientific-misconduct</u>.

Support Systems:

Student Counseling Services (SCS) - (213) 740-7711 – 24/7 on call Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention. <u>https://engemannshc.usc.edu/counseling/</u>

National Suicide Prevention Lifeline - 1-800-273-8255

Provides free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week. <u>http://www.suicidepreventionlifeline.org</u>

Relationship & Sexual Violence Prevention Services (RSVP) - (213) 740-4900 - 24/7 on call

Free and confidential therapy services, workshops, and training for situations related to gender-based harm.<u>https://engemannshc.usc.edu/rsvp/</u>

Sexual Assault Resource Center

For more information about how to get help or help a survivor, rights, reporting options, and additional resources, visit the website: <u>http://sarc.usc.edu/</u>

Office of Equity and Diversity (OED)/Title IX compliance – (213) 740-5086

Works with faculty, staff, visitors, applicants, and students around issues of protected class. <u>https://equity.usc.edu/</u>

Bias Assessment Response and Support

Incidents of bias, hate crimes and microaggressions need to be reported allowing for appropriate investigation and response. <u>https://studentaffairs.usc.edu/bias-assessment-response-support/</u>

Student Support & Advocacy – (213) 821-4710

Assists students and families in resolving complex issues adversely affecting their success as a student EX: personal, financial, and academic. https://studentaffairs.usc.edu/ssa/

Diversity at USC – <u>https://diversity.usc.edu/</u>

Tabs for Events, Programs and Training, Task Force (including representatives for each school), Chronology, Participate, Resources for Students