AME 302 Dynamic Systems
Units: 3
Fall 2019
Lecture: Monday, Wednesday—10:00 – 11:20 am
2:00 – 3:20pm
Discussion: Fri—10:00 – 11:50 am

Location: VHE 206 (lecture)/ THH 208 (discussion)
KAP 145 (lecture)/ THH 208 (discussion)

Instructor: Dr. Inna Abramova
Office: OHE 430M
Office Hours: Tuesday 10am – 12 pm & 3 – 5pm,
Thursday 10am – 12pm
Contact Info: abramova@usc.edu

Teaching Assistant: Ruiyang Wang
Office: VHE 202
Office Hours: Tuesday 12 – 3 pm
Contact Info: ruiyangw@usc.edu; (213) 740-8253

IT Help: USC Information Technology Services
http://itservices.usc.edu/
Hours of Service: Monday-Thursday: 8:00 am-7:00 pm,
Friday: 8:00 am-5:00 pm,
Saturday-Sunday: 1:00 pm-5:00 pm
Contact Info: consult@usc.edu, (213) 740-555
Course Description
Modeling of lumped parameter elements and systems; free and forced response of first and second order systems; design-oriented approach to dynamic systems. This course is suitable for undergraduate students in aerospace, bio, civil and mechanical engineering.

Learning Objectives
- Math review: vectors and matrices, complex numbers, differential equations, Laplace transform, analytical solutions of 1st-order and 2nd-order differential equations
- Dynamic system representations: differential equations, transfer functions, state equations, block diagrams
- Modeling of mechanical, electrical, fluid and thermal systems
- Lagrange’s equations for mechanical systems
- Modeling of combined or mixed dynamic systems, electro-mechanical systems
- System-Level analysis in time domain, free and forced response, transient and steady-state response, system stability
- Introduction to frequency-domain analysis
- Introduction to feedback control systems
- Utility of software packages MATLAB/SIMULINK and/or Wolfram Mathematica for modeling and simulation of dynamical systems; numerical solution of differential equations

Prerequisite(s): MATH 245
Co-Requisite(s): None
Concurrent Enrollment: None
Recommended Preparation: AME 309 or CE 309; AME 301 or CE 325

Course Notes
Class notes, assignments, handouts, and other class materials are downloadable from the Blackboard: https://blackboard.usc.edu/. Class announcements will also be posted on the Blackboard.

Required Readings and Supplementary Materials
Required Textbook:

Supplementary Reading:

Description and Assessment of Assignments
Two midterm exams, 5 quizzes, 10 sets of weekly homework problems, a project, and the final exam will be assigned and graded during the semester. The accumulated points that a student earned from all the assignments will be used to assign a grade for the student. The grading is curved.

Software MATLAB/Simulink or Wolfram Mathematica is required to do the project.

Grading Breakdown

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Points</th>
<th>% of Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Homeworks, 9 pts each</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>5 Quizzes, 18 pts each</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>Project</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>Midterm 1</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>Final Exam</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>600</td>
<td>100</td>
</tr>
</tbody>
</table>

Assignment Submission Policy
Weekly homework assigned, and due the following week. The class project report is due on the last day of classes, December 6, 2019.

Additional Policies
Late homework receives NO credits.

A 110-min discussion session will be held each week, to address problem-solving, issues in lectures, homework problems, and the project.

The midterm dates, quiz dates, and homework due dates, shown in the Course Schedule: A Weekly Breakdown on p. 6 are tentative and may be changed as logical progress of the course topics requires.
Course Outline

1. Introduction to AME 302 (Refer to Chapter 1)

2. Mathematics Review (Refer to Chapter 2; handout)
 - Vectors and Matrices (handout)
 - Complex numbers (handout)
 - Ordinary differential equations; solving differential equations via the method of undetermined coefficients (Section 2.1, handout)
 - Laplace Transform & its properties; Initial Value theorem & Final Value theorem (Section 2.2, handout)
 - Inverse Laplace transform by partial fraction expansion (Section 2.4, handout)
 - Solution of differential equations via Laplace transform (Section 2.3, handout)

3. Mechanical Systems (Refer to Chapters 2, 3, 4, and 5)
 - Three keys in modeling dynamic systems: (a) Fundamental principles; (b) models of basic elements; and (c) ways of analysis (synthesis)
 - Review of fundamental principles (Newton’s laws) of mechanical systems
 - Inertia, spring and damping elements (Sections 4.1, 4.2, 4.4, 4.5)
 - Translational and rotational systems (Chapter 3)
 - Geared systems (Chapter 3)
 - Derivation of equations of motion (rigid body motion, single and multi-body systems, coupled translational and rotational systems) (Chapters 3 and 4)
 - Transfer function formulation (Sections 2.6 and 5.1)
 - State-space representation (Section 5.2)
 - Block diagrams (Section 5.1)
 - Energy methods and Lagrange’s equations (optional) (Section 4.3, handout)

4. Electrical Systems (Refer to Chapter 6)
 - Basic elements and concept of impedance (Sections 6.1 and 6.3)
 - Passive circuit analysis (Section 6.2)
 - Active circuit analysis (Section 6.4)

5. System Analysis in Time Domain – Transient and Steady-State Response (Refer to Chapter 8)
 - Categories of system response
 - 1st-order systems (Section 8.1)
 - 2nd-order systems (Sections 8.2 and 8.3)
 - Higher-order systems

6. System-Level Analysis (Refer to Chapters 6, 9, and 10; handout)
 - Block diagrams with multiple inputs and multiple outputs
 - Electro-mechanical systems (Sections 6.5 through 6.7)
 - Feedback control systems (Chapter 10)
 - Stability (handout)
• Frequency response (Chapter 9)

7. Modeling and Simulation with software: MATLAB/SIMULINK and Wolfram Mathematica (Refer to Chapter 5, and handouts)

- Transfer function formulation and system response with MATLAB (Sections 2.10 and 4.7, and handout) and with Mathematica (handout)
- State representation with MATLAB (Section 5.3 and handout) and with Mathematica (handout)
- Solution of Differential equations with MATLAB (Section 5.4) and with Mathematica (handout)
- Block diagram and SIMULINK (Sections 5.5, 5.6, and 6.9)

8. Thermal and Fluid Systems (optional, time-permitting; refer to Chapter 7)

- Fluid capacitance and fluid resistance
- Liquid-level systems
- Thermal capacitance and thermal resistance
- Dynamic models of thermal systems
Course Schedule: A Weekly Breakdown

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topics/Daily Activities</th>
<th>Readings and Homework</th>
<th>Deliverable/ Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/26-8/30</td>
<td>Introduction Mathematics Review</td>
<td>Chapters 1 and 2; handout</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9/03-9/06</td>
<td>Mathematics Review</td>
<td>Chapter 2; handout HW1 assigned</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9/09-9/13</td>
<td>Mechanical Systems: modeling, fundamental principles, basic elements, translational motion Quiz 1 09/11</td>
<td>Chapter 4 (Sections 4.1, 4.2) HW2 assigned</td>
<td>HW1 due 09/11</td>
</tr>
<tr>
<td>4</td>
<td>9/16-9/20</td>
<td>Mechanical systems: translational and rotational systems</td>
<td>Chapter 3 (Section 3.1) HW2 assigned</td>
<td>HW2 due 9/18</td>
</tr>
<tr>
<td>5</td>
<td>9/23-9/27</td>
<td>Mechanical systems: rotational systems Quiz 2 09/25</td>
<td>Chapters 3 and 4 HW3 assigned</td>
<td>HW3 due 9/25</td>
</tr>
<tr>
<td>6</td>
<td>9/30-10/4</td>
<td>Mechanical systems: rigid body motion, multi-body systems, coupled translational and rotational systems</td>
<td>Chapters 3 and 4 HW4 assigned</td>
<td>HW4 due 10/02</td>
</tr>
<tr>
<td>7</td>
<td>10/07-10/11</td>
<td>System modeling techniques: transfer function, state-space representation, block diagrams Quiz 3 10/09</td>
<td>Sections 2.6, 5.1, 5.2 HW6 assigned</td>
<td>HW5 due 10/09</td>
</tr>
<tr>
<td>8</td>
<td>10/15-10/16</td>
<td>Midterm material review Project review Midterm 1, 10/16</td>
<td>Class Project assigned</td>
<td>HW6 due 10/16</td>
</tr>
<tr>
<td>9</td>
<td>10/21-10/25</td>
<td>Modeling & Simulation with Software Electrical systems: fundamentals</td>
<td>Sections 2.10, 4.7, 5.3-5.6, and handout Chapter 6 (Sections 6.1, 6.2)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10/28-11/01</td>
<td>Electrical systems: passive and active circuits analysis</td>
<td>Chapter 6 (Sections 6.3, 6.4) HW7 assigned</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11/04-11/08</td>
<td>System-Level analysis: modeling of combined systems Electromechanical systems Quiz 4 11/06</td>
<td>Handout Chapter 6 (Sections 6.5-6.7) HW8 assigned</td>
<td>HW7 due 11/06</td>
</tr>
<tr>
<td>12</td>
<td>11/12-11/15</td>
<td>Midterm material review Midterm 2, 11/13</td>
<td></td>
<td>HW8 due 11/13</td>
</tr>
<tr>
<td>14</td>
<td>11/25-11/26</td>
<td>System analysis in time domain Quiz 5 11/25</td>
<td>Chapter 8 HW10 assigned</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12/02-12/06</td>
<td>System-Level analysis: stability, frequency response Course review for final exam</td>
<td>Chapter 9 handout</td>
<td>HW10 due 12/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class Project report due 4/26</td>
<td></td>
</tr>
<tr>
<td>FINAL</td>
<td></td>
<td>Final Exam</td>
<td></td>
<td>12/13 2:00 – 4:00 pm</td>
</tr>
</tbody>
</table>
Statement on Academic Conduct and Support Systems

Academic Conduct
Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Section 11, Behavior Violating University Standards [https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions/]. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, [http://policy.usc.edu/scientific-misconduct/].

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the Office of Equity and Diversity [http://equity.usc.edu/] or to the Department of Public Safety [http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us]. This is important for the safety whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person ([https://uscsa.usc.edu/trojans-care-4-trojans/]). The sexual assault resource center webpage [https://studenthealth.usc.edu/sexual-assault/] describes reporting options and other resources.

Support Systems
A number of USC’s schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute [http://dornsife.usc.edu/ali], which sponsors courses and workshops specifically for international graduate students. The Office of Disability Services and Programs, at [http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html] provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency Information [http://emergency.usc.edu/] will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.