PM 522b Introduction to the Theory of Statstics (Part II)

Keck School of Medicine of USC

Units: 3 Term: Spring 2019 Time: W 10am-1pm USC HSC, Soto Building Room 106 Location: Instructor: Meredith Franklin Office: SSB 202A Office Hours: W 1-2pm Contact Info: meredith.franklin@usc.edu 323-442-2703 (office)

Course Description

PM522b follows PM522a with a rigorous introduction to statistical inference. The sequence PM522a-b is required for all the Biostatistics Ph.D. and M.S students, and is suggested for quantitatively oriented students in Epidemiology and other population-based sciences. Topics covered in 522b include the theoretical approaches to point estimation, evaluation of estimators, likelihood methods, numerical solutions to likelihood, hypothesis testing, asymptotics, and theoretical basis behind ANOVA and regression (if time permits).

Learning Objectives

Through this course, students will become familiar with commonly used inferential techniques. We will cover:

- the basic theoretical foundations of point estimation including method of moments and maximum likelihood
- properties of estimators
- the theory of hypothesis testing
- the theory of interval estimation
- asymptotic theory
- theoretical aspects of analysis of variance and linear regression

Prerequisite(s): PM522a

Recommended Preparation: courses in linear algebra and calculus

Course Notes

Lecture notes presented in class will be posted on Blackboard.

Technological Proficiency and Hardware/Software Required

There will be some computation using R (downloaded from http://cran.r-project.org)

Required Readings and Supplementary Materials

Required text:

 George Casella and Roger L. Berger <u>Statistical Inference</u>, 2nd edition (2002), Brooks/Cole.

Description and Assessment of Assignments

Assignments: There will be 10-11 assignments given throughout the semester, approximately every weeks. Students may discuss the problems with one another, however, individual solutions must be submitted and copying will not be tolerated. Late assignments will be penalized by 20% for each day past the due date.

Exams: There will be two in-class exams (midterm 2hrs, final 3hrs). A one-page "cheat sheet" will be allowed in both exams.

Participation: We will work through several examples in class, and students are expected to participate through discussion and problem solving.

Assignment	% of Grade
In-class participation	5%
Homework (10-11)	30%
Midterm Exam	30%
Final Exam	35%
TOTAL	100%

Grading Breakdown

Assignment Submission Policy

Assignments shall be submitted on Blackboard. Late homework assignments will not be accepted without penalty, except when verifiable extenuating circumstances can be demonstrated.

Course Schedule: A Weekly Breakdown

	Topics/Weekly Activities	Due Dates
Week 1	Intro to statistical inference, review of random	
January 9	variables, random samples, order statistics	
Week 2	Principles of data reduction: statistics, sufficiency	
January 16	principle, likelihood principle	
Week 3	Principles of data reduction con't: minimum	HW1 Due
January 23	sufficient statistics, exponential family	
Week 4	Methods for finding point estimators: maximum	HW2 Due
January 30	likelihood estimation	
Week 5	Methods for finding point estimators: numerical	HW3 Due
February 6	solutions to maximum likelihood estimation, EM	
	algorithm	
Week 6	Methods for finding point estimators: moment	HW4 Due
February 13	generating functions, method of moments	
Week 7	Evaluating estimators: bias, mean squared error,	HW5 Due
February 20	best unbiased estimators (MVUE), the Cramer-	
	Rao lower bound	
Week 8	Evaluating estimators: Cramer-Rao (con't) the	HW6 Due
February 27	Rao-Blackwell & Lehmann-Scheffe Theorems	
Week 9	Midterm Exam (2 hours)	Midterm Exam
March 6		
Spring Break	No Class	
March 13		
Week 10	Hypothesis testing: simple and composite	
March 20	hypotheses, type I & type II error, p-values	
Week 11	Hypothesis testing: likelihood ratio test, Neyman-	HW7 Due
March 27	Pearson lemma	
Week 12	Interval estimation: confidence intervals, upper	HW8 Due
April 3	and lower bounds, coverage probabilities	
Week 13	Asymptotics: point estimators, rates of	HW9 Due
April 10	convergence, consistency, efficiency, asymptotic	
	normality	
Week 14	Asymptotics: bootstrap, EM algorithm,	HW10 Due
April 17	robustness	
Week 15	Theoretical concepts behind ANOVA and linear	HW11 Due
April 24	regression Matrix representation of linear	
	regression	
FINAL	In class final exam (3 hours)	Final Exam
May 8		

Statement on Academic Conduct and Support Systems

Academic Conduct:

Plagiarism – presenting someone else's ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in *SCampus* in Part B, Section 11, "Behavior Violating University Standards" <u>https://policy.usc.edu/scampus-part-b/</u>. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific

misconduct, http://policy.usc.edu/scientific-misconduct.

Support Systems:

Student Counseling Services (SCS) - (213) 740-7711 – 24/7 on call Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention. https://engemannshc.usc.edu/counseling/

National Suicide Prevention Lifeline - 1-800-273-8255

Provides free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week. <u>http://www.suicidepreventionlifeline.org</u>

Relationship and Sexual Violence Prevention Services (RSVP) - (213) 740-4900 - 24/7 on call Free and confidential therapy services, workshops, and training for situations related to gender-based harm. <u>https://engemannshc.usc.edu/rsvp/</u>

Sexual Assault Resource Center

For more information about how to get help or help a survivor, rights, reporting options, and additional resources, visit the website: <u>http://sarc.usc.edu/</u>

Office of Equity and Diversity (OED)/Title IX compliance – (213) 740-5086 Works with faculty, staff, visitors, applicants, and students around issues of protected class. https://equity.usc.edu/

Bias Assessment Response and Support

Incidents of bias, hate crimes and microaggressions need to be reported allowing for appropriate investigation and response. https://studentaffairs.usc.edu/bias-assessment-response-support/

The Office of Disability Services and Programs Provides certification for students with disabilities and helps arrange relevant accommodations. http://dsp.usc.edu

Student Support and Advocacy – (213) 821-4710

Assists students and families in resolving complex issues adversely affecting their success as a student EX: personal, financial, and academic. <u>https://studentaffairs.usc.edu/ssa/</u>

Diversity at USC

Information on events, programs and training, the Diversity Task Force (including representatives for each school), chronology, participation, and various resources for students. https://diversity.usc.edu/

USC Emergency Information

Provides safety and other updates, including ways in which instruction will be continued if an officially declared emergency makes travel to campus infeasible, <u>http://emergency.usc.edu</u>

USC Department of Public Safety – 213-740-4321 (UPC) and 323-442-1000 (HSC) for 24-hour emergency assistance or to report a crime Provides overall safety to USC community. http://dps.usc.edu