SSCI 684, Spatial Modeling with GIS

Syllabus

Units: 4

Term—Day—Time: Spring, 2019, Mondays, 2:00 p.m. – 4:50 p.m.

Location: Spatial Sciences Institute, AHF 57G

Instructor: Laura C Loyola, Ph.D.
Office: AHF B56G
Regular Office Hours: Mon 10:00-11:00 a.m. and Tues 1:00-2:00 p.m. PT. Also available by appointment.
Contact Info: loyola@usc.edu, 213-740-5612
www.bluejeans.com/loyola

IT Help: Richard Tsung
Office: AHF B57B
Hours of Service: Mondays to Fridays, 9:00 a.m.-5:00 p.m.
Contact Info: ctsung@usc.edu, 213-821-4415

Library Help: Andy Rutkowski
Office: VKC B36B
Hours of Service: Tuesdays, 10:00 a.m.-12:00 noon; Thursdays 4:30-5:30 p.m., or other times by appointment
Contact Info: arutkows@usc.edu, 213-740-6390 (office)
Course Description
This course explores how geographic information systems and related technologies (global positioning systems, remote sensing, etc.) can be used to promote and support the construction and simulation of dynamic models of human and environmental systems. The fundamental feature of such systems involves diffusion over time and space and individual cases may range from diffusion of pollutants and invasive species across landscapes to the diffusion of disease by contact between individuals. The approaches used to model these phenomena may range from the continuous representation of system dynamics to the discrete interactions of individual, agent-based models. The measurement and modeling techniques that can be used to describe spatially distributed processes and patterns affecting human and environmental systems will be introduced with an assortment of weekly readings and discussions. The course is aimed at doctoral students and a series of individual and group projects allow class participants to develop and use their own models for more detailed research. Calculus and programming experience may be helpful but are not required. In addition to the textbooks, exercises and readings will be provided from a variety of sources as required.

Learning Objectives
On completion of this course, students will be able to:

• Describe the fundamental building blocks (data sources, data models, spatial analysis methods, programming tools, etc.) used in geographic information technologies and spatial models.
• Discuss how dynamic spatial models have been implemented to both simulate the functioning of human and environmental systems and understand their behavior under altered conditions.
• Discuss the ways in which advances in our knowledge of human and environmental systems on the one hand and computer technologies on the other hand have combined to allow more realistic and detailed representations of the spatiotemporal variability of these systems in spatial models.
• Discuss the impact of sampling, resolution, uncertainty, and error on spatial model outcomes and some of the new opportunities afforded by modern instrumentation and measurement techniques.
• Critically evaluate the types of models that will be required in the future to effectively manage land, water, air and biotic resources, assess environmental risks, and promote human health and well-being.

Prerequisite(s): None
Co-Requisite (s): None
Concurrent Enrollment: None
Recommended Preparation: Students must be enrolled in an existing USC PhD program
Course Notes
The course will be taught as a seminar and class meetings will be used to discuss the assigned readings and any questions and related topics that arise from the readings. The learning and teaching strategies are student-centered. They aim to encourage a deep-learning approach by using reflection and self-evaluation. The individual class sessions will be organized around class readings that are designed to provide the essential background and framework for study. Students will be required to reflect on their learning through in-class discussions and a series of carefully crafted assignments.

Technological Proficiency and Hardware/Software Required
Students are expected to have a working knowledge of GIS and the Microsoft Office suite. The modeling software and geospatial data required for course assignments will be accessed using computing resources provided by the Spatial Sciences Institute.

Required Readings
Students are expected to acquire the text books ahead of class. Most journal articles are accessible through the USC Libraries system. If a student does not have access to the textbooks, please speak with the instructor at the start of the semester to establish a workaround.

“Guiding” Topographic and Land Cover Variables.” *Journal of Applied Meteorology* 40, no. 6 (June): 1060-1074.

Description and Assessment of Assignments

Students must participate in class discussion on a regular basis, prepare written assignments in the form of weekly briefs and model reports, and complete team projects and presentations.

Class Participation (18%): A class participation grade for the semester will be assigned based upon how actively students engage in the course. Students will be required to read all material outlined for each week of the course, and be prepared to lead and participate in group
discussions about the readings in class. Failure to attend or to be adequately prepared to
discuss the readings will lead to the assignment of a lower grade for that week. Students should
also maintain a written log of insights and observations from the classroom discussions and
accompanying homework projects that will assist in completing the final project.

Weekly Briefs (12%): Each week students will have the opportunity to use the Blackboard
Discussion Forum to respond to an assigned article or critique one of their own choosing, students must complete a minimum of 6 of the 12 briefs throughout the semester. These
electronic commentaries are for sharing among the class, and should not exceed 2 – 3 pages. The overall quality of the contributions will be considered in the semester evaluation. To help stimulate discussion, each student should comment on at least one other student’s critique each week.

Model Reports (25%): Written reports will be assigned regularly to document steps in model
formulation and/or to reflect upon assigned readings. Different criteria will be specified for model construction and deconstruction.

Class Presentation (15%): Students will be divided into 2-4 groups (depending on class size) and these groups will conduct a seminar on a topic determined in consultation with the instructor in the second half of the classes scheduled in Weeks 10 and 11. A one-page summary will be
distributed in advance of the class itself and the topic may be an evaluation of a model or software (Caline, RePast, etc.), a complex systems subject (fractals, modifiable areal unit problems, neural networks, etc.) or some specific technique or application that is relevant but not otherwise covered in the course.

Team Project (30%): In the second half of the course, students will work in teams on projects
determined in consultation with the instructor. The team will construct a spatial model to
address some geographically relevant health problem. The final report and class presentation
will summarize insights from each phase of the modeling process as experienced in the problem context.

Grading Breakdown

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Number</th>
<th>Points Each</th>
<th>% of Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Participation</td>
<td>18</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Weekly Briefs</td>
<td>6</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Model Reports</td>
<td>5</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Class Presentation</td>
<td>1</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Team Project</td>
<td>1</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>
Assignment Submission Policy
Assignments will be submitted for grading via Blackboard using the due dates specified in the Course Schedule below.

Additional Policies
Students are expected to attend and participate in every class session and to complete and upload all assignments before the deadlines detailed in the Course Schedule. Late work will be assessed a penalty of 10% per day and zero grades will be assigned for work that is more than one week late.

Course Schedule: A Weekly Breakdown

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>GIS as a Modeling Platform: A discussion of the various ways in which space and time are conceptualized in geographic information systems and used in spatial models of selected social and environmental processes.</td>
<td>Stewart et al. (2013) Wilson & Burrough (1999) Longley et al (2015) Ch. 14, 15, 17</td>
<td>Submit brief #1 by 5 p.m. on Wed, 1/16. Comments due by 10 a.m. on Fri, 1/18.</td>
</tr>
<tr>
<td>Week 3</td>
<td>GIS Representation Options: A discussion of the various ways in which social and environmental features are conceptualized and treated as objects and fields in geographic information systems and the challenges that are encountered representing time in GIS-based spatial models.</td>
<td>Bhaduri et al. (2007) Graham et al. (2004) Skidmore (2002) Ch. 2-5</td>
<td>Submit brief #2 by 5 p.m. on Wed, 1/24. Comments due by 10 a.m. on Fri, 1/26.</td>
</tr>
<tr>
<td>Week 4</td>
<td>Legacy GIS Datasets: A discussion of the importance of and methods used to construct and revise a variety of social and environmental datasets for use with a GIS and that offer national and occasionally global coverage.</td>
<td>Buzzelli et al. (2006) Nuvolone et al (2011) Patterson et al. (2007) Green et al (2017) Ch. 3, 4, 7, and 9</td>
<td>Submit brief #3 by 5 p.m. on Wed, 1/30. Comments due by 10 a.m. on Fri, 2/1.</td>
</tr>
<tr>
<td>Week 5</td>
<td>New GIS Data Sources: A discussion of some of the new data sources and the types of processing that must be performed to yield useful information and/or</td>
<td></td>
<td>Submit brief #4 by 5 p.m. on Wed, 2/6. Comments due by 10 a.m. on Fri, 2/8.</td>
</tr>
<tr>
<td>Week 6 2/11</td>
<td>Topic</td>
<td>Readings and Assignments</td>
<td>Deliverables/Due Dates</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| | to use them with other kinds of digital data in spatial models. | Brimicombe A (2010) Ch. 8
Brusdon (2008)
Brusdon et al. (1996)
Mennis (2006) | Submit brief #5 by 5 p.m. on Wed, 2/13.
Comments due by 10 a.m. on Fri, 2/15.
Model report #1 due by 5 p.m. on Fri, 2/15. |
| Week 7 2/19* | **Measurement, Calibration, & Validation:** An introduction to the special challenges and issues that are confronted when using GIS tools to describe and model place-based exposures and the spatial distributions of phenomena of interest. | Brimicombe (2010) Ch. 9
Jarvis & Stuart (2001a, b)
Hutchinson (1989) | Model report #2 due by 5 p.m. on Fri, 2/21. |
| *Monday, 2/18 is university holiday | **Model Elements I (Spatial Patterns & Processes):** A discussion of some of the ways forces of attraction and segregation, individual mobile entities, and processes of spread are featured in models of social and environmental systems. | Ford (2009)
Phillips et al. (2006)
Westervelt et al. (2012) | Submit brief #6 by 5 p.m. on Wed, 2/27.
Comments due by 10 a.m. on Fri, 3/1.
Model report #3 due by 5 p.m. on Fri, 3/1. |
| Week 8 2/25 | **Model Elements II (Stocks & Flows):** A discussion of the various ways stocks accumulate and flows occur in time and the mathematical modeling protocols used for stocks (integrals) and flows (differentials). | Railsback & Grimm – Part II (2012)
Tracy et al. (2018) | Submit brief #7 by 5 p.m. on Wed, 3/6.
Comments due by 10 a.m. on Fri, 3/8.
Model report #4 due by 5 p.m. on Fri, 3/8. |
| Week 9 3/4 | **Model Elements III (Agents):** A discussion of some of the ways which agents have been used to represent mobile individuals in dynamic models of human and environmental systems, and how complex system dynamics may be agent/individual-based or differential equation-based or both. | O’Sullivan & Perry (2013)
Railsback & Grimm (2012) – Parts III & IV | Submit brief #8 by 5 p.m. on Wed, 3/20.
Comments due by |
| 3/11* | *3/10-3/19 is Spring Recess | | |
| Week 10 3/18 | **Modeling Process I (Guiding Principles):** A discussion of the tasks that will need to be completed as a part of a typical modeling workflow. | O’Sullivan & Perry (2013)
Railsback & Grimm (2012) – Parts III & IV | Submit brief #8 by 5 p.m. on Wed, 3/20.
Comments due by |
| Week 11 3/25 | **Modeling Process II (Air Pollution Examples):**
| An introduction to some of the ways spatial modeling has been used to characterize one or more forms of air pollution exposure. | Briggs (2005)
Jerrrett et al. (2005)
Kanarogloua et al. (2005)
Moore et al. (2007) | Submit brief #9 by 5 p.m. on Wed, 3/27.
Comments due by 10 a.m. on Fri, 3/29.
Presentation summary due by 10 a.m. on Fri, 3/29. In-class presentations (4/1). |
| **Modeling Process III (Pesticide Exposure Examples):**
| An introduction to some of the ways spatial modeling has been used to characterize one or more forms of pesticide exposure. | Cockburn et al. (2011)
Goldberg et al. (2007)
Jaga & Dharmani (2005)
Marusek et al. (2006)
Wang et al. (2011) | Submit brief #10 by 5 p.m. on Wed, 4/3.
Comments due by 10 a.m. on Fri, 4/5. |
| **Modeling the Modeler:**
| Discuss the human element of modeling and how this can be captured and passed from the model developer to a variety of users and use cases. | Boulton et al. (2011);
De Vosa et al. (2013);
Ford (2009);
Van der Sluijs (2002) | Submit brief #11 by 5 p.m. on Wed, 4/10.
Comments due by 10 a.m. on Fri, 4/12.
Model report #5 due by 5 p.m. on Fri, 4/12. |
| **The Art of Modeling:**
| Discuss the various features of successful modeling applications, including the need for authenticity, parsimony, transparency, and patience. | Alexandrov et al. (2011)
Ford (2009)
Jakeman et al. (2006)
Schmolke et al. (2010a, b) | Submit brief #12 by 5 p.m. on Wed, 4/17.
Comments due by 10 a.m. on Fri, 4/19. |
| **Final Presentations:**
| Students will present their team projects, summarizing the insights garnered from each phase of the modeling process as experienced in their specific problem context. | | Team project presentations
Final team report due by 5 p.m. on Fri, 5/5. |
| **Final Exams 5/1-5/8** | **Final Assessment at scheduled time** | | |
Statement on Academic Conduct and Support Systems

Academic Conduct
Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards” policy.usc.edu/scampus-part-b. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

Support Systems

Student Counseling Services (SCS) – (213) 740-7711 – 24/7 on call engemannshc.usc.edu/counseling
Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention.

National Suicide Prevention Lifeline – 1 (800) 273-8255 – 24/7 on call www.suicidepreventionlifeline.org
Provides free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week.

Relationship and Sexual Violence Prevention Services (RSVP) – (213) 740-4900 – 24/7 on call engemannshc.usc.edu/rsvp
Free and confidential therapy services, workshops, and training for situations related to gender-based harm.

Office of Equity and Diversity (OED)/Title IX Compliance – (213) 740-5086 equity.usc.edu, titleix.usc.edu
Information about how to get help or help a survivor of harassment or discrimination, rights of protected classes, reporting options, and additional resources for students, faculty, staff, visitors, and applicants. The university prohibits discrimination or harassment based on the following protected characteristics: race, color, national origin, ancestry, religion, sex, gender, gender identity, gender expression, sexual orientation, age, physical disability, medical condition, mental disability, marital status, pregnancy, veteran status, genetic information, and any other characteristic which may be specified in applicable laws and governmental regulations.

Bias Assessment Response and Support – (213) 740-2421 studentaffairs.usc.edu/bias-assessment-response-support
Avenue to report incidents of bias, hate crimes, and microaggressions for appropriate investigation and response.

The Office of Disability Services and Programs – (213) 740-0776
Support and accommodations for students with disabilities. Services include assistance in providing readers/notetakers/interpreters, special accommodations for test taking needs, assistance with architectural barriers, assistive technology, and support for individual needs.

Student Support and Advocacy – (213) 821-4710
studentaffairs.usc.edu
Assists students and families in resolving complex personal, financial, and academic issues adversely affecting their success as a student.

Diversity at USC – (213) 740-2101
diversity.usc.edu
Information on events, programs and training, the Provost’s Diversity and Inclusion Council, Diversity Liaisons for each academic school, chronology, participation, and various resources for students.

USC Emergency - UPC: (213) 740-4321, HSC: (323) 442-1000 – 24/7 on call
dps.usc.edu, emergency.usc.edu
Provides safety and other updates, including ways in which instruction will be continued if an officially declared emergency makes travel to campus infeasible.

USC Department of Public Safety – - UPC: (213) 740-6000, HSC: (323) 442-120 – 24/7 on call
dps.usc.edu
Non-emergency assistance or information.

Resources for Online Students
The Course Blackboard page and the GIST Community Blackboard page have many resources available for distance students enrolled in our graduate programs. In addition, all registered students can access electronic library resources through the link https://libraries.usc.edu/. Also, the USC Libraries have many important resources available for distance students through the link: https://libraries.usc.edu/faculty-students/distance-learners. These include instructional videos, remote access to university resources, and other key contact information for distance students.