ITP256 – Blockchain
Units: 4
Spring 2019

Catalogue Description
Explore blockchain technology, a secure and immutable way to record transactions. Learn the workings of cryptocurrencies. Explore the impact on financial services, business and contracting.

Course Description
Bitcoin! The cryptocurrency that has been applauded, ridiculed, hacked (well, not directly), and dismissed. Yet it is trading at a high exchange rate against the US Dollar. Whatever the fate of bitcoin, the technological breakthrough is worth studying. Blockchain is the distributed and decentralized database technology behind this cryptocurrency. This course explores the fundamentals of the public, transparent, secure, immutable and distributed database called blockchain. Blockchains can be used to record and transfer any digital asset not just currency. This course will introduce students to the workings and applications of this potentially disruptive technology. Its potential impact on financial services, government, banking, contracting and identity management will be discussed.

Learning Objectives
Students will be able to achieve the following learning objectives at the completion of the course.

- Be able to explain what is blockchain
- Be able to explain why we need blockchain. What is the real world problem(s) that blockchain is trying to solve
- Understand and describe how blockchain works
- Explain the underlying technology of transactions, blocks, proof-of-work, and consensus building
- How does blockchain exist in the public domain (decentralized, distributed) yet maintain transparency, anonymity, security, immutability, history
- How is blockchain secured without any central controlling or trusted agency
- How is the blockchain incentivized
- How bitcoin cryptocurrency works
- What are the economics of bitcoin (limited supply cryptocurrency)
- Why people value a ‘digital’ currency, how it can be protected against scams, fraud, hacks and attacks
- Explore platforms such as Ethereum to build applications on blockchain
- Explore new ways of using blockchain for applications other than cryptocurrency
- Use cases in business, government, energy, etc.

Prerequisites
None

Co-requisites
None
Concurrent Enrollment
None

Recommended Preparation
None

Lecture
Time: 5 – 8:50 p.m. Th
Room: TBA

Instructor
Name: Chaz Hales, Adjunct Lecturer, Viterbi School of Engineering
Office: N/A
Office Hours: After class or by appointment
Contact Info: chazhale@usc.edu

Teaching Assistant(s)
Name: TBA
Contact Info: TBA

IT Help
IT Support: Provided by Viterbi IT
Hours of Service: 8am – 5pm M-F
Walk-in: DRB 205
Phone: (213) 740-0517
Email: engrhelp@usc.edu

Course Notes
Lectures are delivered face to face in classroom. Lectures are not recorded so attendance is strongly recommended. All course materials will be made available through Blackboard. These include –
- Lecture slides
- Homework Assignments
- Readings
- Software details and instructions for accessing Viterbi Virtual Lab
- Grades and feedback
- In-office and online office hours
- Online discussion forums will be used for out-of-class discussions

Technology Proficiency and Hardware/Software Required
The assignments for this class will include both reading assignments as well as hands-on computer assignments. Tools for doing the computer based assignments will be provisioned through a virtual lab from Viterbi Information Technology (VIT). Students will be able to use their personal computer to access the
virtual lab at any time during the semester. Students must bring their laptop computers to lecture sessions to participate in hands-on activities.

Required Readings and Supplementary Materials

Textbook
- **Title:** Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction
- **Author:** Arvind Narayanan (AN)
- **Publisher:** Princeton University Press (July 19, 2016)
- **ISBN-10:** 0691171696
- **ISBN-13:** 978-0691171692

Draft version of textbook can be downloaded here - https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf

Supplementary Materials
- Additional reading materials will be assigned and provided through Blackboard

Description and Assessment of Assignments

Homework: Most homework is computer based. Homework should be turned in to Blackboard on time. Grading will be based on completeness, accuracy, and timeliness. Feedback will be provided through Blackboard. These are individual effort assignments. Please check Blackboard for assignment details and due dates.

Exams: Two exams. They are written, in-class tests.

Final Project: Final project is a comprehensive project. It consists of concepts, applications and exploration of blockchain.

Grading Breakdown

The weight of graded material during the semester is listed below. The points for each category of assessment will be posted on Blackboard during the semester.

No extra credit assignments will be offered.

<table>
<thead>
<tr>
<th>Category</th>
<th>% of Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>30</td>
</tr>
<tr>
<td>Final Project</td>
<td>10</td>
</tr>
<tr>
<td>Exam I</td>
<td>30</td>
</tr>
<tr>
<td>Exam II</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>
Grading Scale
Course final grades will be determined using the following scale

A 95-100
A- 90-94
B+ 87-89
B 83-86
B- 80-82
C+ 77-79
C 73-76
C- 70-72
D+ 67-69
D 63-66
D- 60-62
F 59 and below

Assignment Submission Policy
It is the responsibility of the student to make sure problem solution and assignment are turned in on time. Make sure you follow the procedures outlined in each assignment (Blackboard submissions).

Late assignment submissions will be subject to a late penalty of 25% per day. No assignments will be accepted later than four days from the due date.

Additional Policies
No make-up exams (except for documented medical, family emergencies or religious observation) will be offered nor will there be any changes made to the Final Exam schedule, except as permitted by university rules. Lecture attendance is not mandatory however it is recommended that students not miss any lecture.

Grading Timeline
Every effort will be made to provide Grades and feedback within 7 business days of the assignment deadline.

Incomplete and Missing Grades
Excerpts for this section have been taken from the University Grading Handbook, located at http://www.usc.edu/dept/ARR/grades/gradinghandbook/index.html. Please see the link for more details on this and any other grading concerns.

A grade of Missing Grade (MG) “should only be assigned in unique or unusual situations... for those cases in which a student does not complete work for the course before the semester ends. All missing grades must be resolved by the instructor through the Correction of Grade Process. One calendar year is allowed to resolve a MG. If an MG is not resolved [within] one year the grade is changed to [Unofficial Withdrawal] UW and will be calculated into the grade point average a zero grade points.

A grade of Incomplete (IN) “is assigned when work is no completed because of documented illness or other ‘emergency’ occurring after the twelfth week of the semester (or 12th week equivalency for any course scheduled for less than 15 weeks).”
Blockchain

ITP 256 (4 units)

Course Outline

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Th 1/10</td>
<td>1</td>
<td>From Bullae to Bitcoin: Course introduction and motivation</td>
<td>https://sites.utexas.edu/dsb/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>History of money</td>
<td>Lecture notes</td>
</tr>
<tr>
<td>2</td>
<td>Th 1/17</td>
<td>3</td>
<td>Landmark technological advances</td>
<td>Lecture notes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Introduction to peer-to-peer networks</td>
<td>Narayanan: Chapter 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Read Nakamoto Paper</td>
</tr>
<tr>
<td>3</td>
<td>Th 1/24</td>
<td>5</td>
<td>The birth of bitcoin, Features of bitcoin</td>
<td>Narayanan: Chapter 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Hash cryptography</td>
<td>Narayanan: Chapter 1</td>
</tr>
<tr>
<td>4</td>
<td>Th 1/31</td>
<td>7</td>
<td>Basics of peer-to-peer transactions</td>
<td>Narayanan: Chapter 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Digital signatures</td>
<td>Narayanan: Chapter 3</td>
</tr>
<tr>
<td>5</td>
<td>Th 2/7</td>
<td>9</td>
<td>ECDSA</td>
<td>Narayanan: Chapter 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Blocks</td>
<td>Narayanan: Chapter 2</td>
</tr>
<tr>
<td>6</td>
<td>Th 2/14</td>
<td>11</td>
<td>Merkle trees</td>
<td>Narayanan: Chapter 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>Blockchain</td>
<td>Narayanan: Chapter 2</td>
</tr>
<tr>
<td>7</td>
<td>Th 2/21</td>
<td>13</td>
<td>Byzantine generals’ problem</td>
<td>Narayanan: Chapter 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>Mining and incentivizing blockchain</td>
<td>Lecture notes</td>
</tr>
<tr>
<td>8</td>
<td>Th 2/28</td>
<td>--</td>
<td>Exam I</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Th 3/7</td>
<td>15</td>
<td>Mining difficulty</td>
<td>Narayanan: Chapter 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>Mining economics</td>
<td>Narayanan: Chapter 5</td>
</tr>
<tr>
<td>10</td>
<td>Th 3/14</td>
<td>--</td>
<td>Spring Break</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Th 3/21</td>
<td>17</td>
<td>Consensus building: Proof of Work</td>
<td>Narayanan: Chapter 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>Bitcoin supply</td>
<td>Narayanan: Chapter 5, 8</td>
</tr>
<tr>
<td>12</td>
<td>Th 3/28</td>
<td>19</td>
<td>Forks</td>
<td>Narayanan: Chapter 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>How to acquire and store bitcoin</td>
<td>Narayanan: Chapter 3</td>
</tr>
<tr>
<td>13</td>
<td>Th 4/4</td>
<td>21</td>
<td>Scalability of bitcoin</td>
<td>Narayanan: Chapter 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>How to break bitcoin</td>
<td>Narayanan: Chapter 3</td>
</tr>
<tr>
<td>14</td>
<td>Th 4/11</td>
<td>23</td>
<td>Smart Contracts: Ethereum</td>
<td>Narayanan: Chapter 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>Ethereum contd.</td>
<td>Lecture notes</td>
</tr>
<tr>
<td>15</td>
<td>Th 4/18</td>
<td>25</td>
<td>Blockchain use cases</td>
<td>Lecture notes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>Blockchain use cases contd.</td>
<td>Lecture notes</td>
</tr>
<tr>
<td>16</td>
<td>Th 4/25</td>
<td>--</td>
<td>Exam II</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>TBD</td>
<td>--</td>
<td>Final Project Due</td>
<td></td>
</tr>
</tbody>
</table>
Statement on Academic Conduct and Support Systems

Academic Conduct:
Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards” https://policy.usc.edu/scampus-part-b/. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

Support Systems:
Student Counseling Services (SCS) - (213) 740-7711 – 24/7 on call
Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention. https://engemannshc.usc.edu/counseling/

National Suicide Prevention Lifeline - 1-800-273-8255
Provides free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week. http://www.suicidepreventionlifeline.org

Relationship and Sexual Violence Prevention Services (RSVP) - (213) 740-4900 - 24/7 on call
Free and confidential therapy services, workshops, and training for situations related to gender-based harm. https://engemannshc.usc.edu/rserv/

Sexual Assault Resource Center
For more information about how to get help or help a survivor, rights, reporting options, and additional resources, visit the website: http://sarc.usc.edu/

Office of Equity and Diversity (OED)/Title IX Compliance – (213) 740-5086
Works with faculty, staff, visitors, applicants, and students around issues of protected class. https://equity.usc.edu/

Bias Assessment Response and Support
Incidents of bias, hate crimes and microaggressions need to be reported allowing for appropriate investigation and response. https://studentaffairs.usc.edu/bias-assessment-response-support/

The Office of Disability Services and Programs
Provides certification for students with disabilities and helps arrange relevant accommodations. http://dsp.usc.edu

Student Support and Advocacy – (213) 821-4710
Assists students and families in resolving complex issues adversely affecting their success as a student EX: personal, financial, and academic. https://studentaffairs.usc.edu/ssa/

Diversity at USC
Information on events, programs and training, the Diversity Task Force (including representatives for each school), chronology, participation, and various resources for students. https://diversity.usc.edu/

USC Emergency Information
Provides safety and other updates, including ways in which instruction will be continued if an officially declared emergency makes travel to campus infeasible, http://emergency.usc.edu

USC Department of Public Safety – 213-740-4321 (UPC) and 323-442-1000 (HSC) for 24-hour emergency assistance or to report a crime.
Provides overall safety to USC community. http://dps.usc.edu