[DOWNLOAD A USC IDENTITY GUIDELINES COMPLIANT LOGOTYPE, THEN DELETE THIS TEXT AND DRAG/DROP THE FILE HERE]

Course ID and Title "Machine Learning for Knowledge Extraction and Reasoning" Units: 4.0

Term—Day—Time: Spring 2019—Monday—2:00-5:20pm

IMPORTANT:

The general formula for contact hours is as follows:

Courses must meet for a minimum of one 50-minute session per unit per week over a 15-week semester. Standard fall and spring sessions (001) require a final summative experience during the University scheduled final exam day and time.

(Please refer to the Contact Hours Reference guide.)

Location: TBD; (website will be up at <u>http://www-bcf.usc.edu/~xiangren/cs699 IE fall2018.html</u>)

Instructor: Xiang Ren

Office: SAL 308 Office Hours: by appointment Contact Info: xiangren@usc.edu, 213-821-4067, Timeline for replying to emails/calls: within 48 hours

Teaching Assistant: Hongtao Lin

Office: TBD Office Hours: TBD Contact Info: lin498@usc.edu

IT Help: N/A Hours of Service: Contact Info: Email, phone number (office, cell), Skype, etc.

Course Description

In today's computerized and information-based society, people are inundated with vast amounts of text data, ranging from news articles, social media posts, scientific publications, to a wide range of textual information from various vertical domains (e.g., corporate reports, advertisements, legal acts, medical reports). How to turn such massive and unstructured text data into structured, actionable knowledge, and how to enable effective and user-friendly access to such knowledge is a grand challenge to the research community. This course will introduce and discuss many of the sub-problems and machine learning approaches for knowledge extraction and reasoning, including use of language features, sequence learning models, rule learning, relational learning, and deep learning techniques. We will discuss segmentation of text sequences, classification of segments into types, clustering and de-duplication of records, knowledge graph embedding, knowledge reasoning.

Learning Objectives

At a high-level, through this course students will have a concrete idea of what knowledge extraction and reasoning is about, what the state-of-the-art is, and what the open problems are. Along the way, students will explore many of the mainstays of machine learning, including maximum likelihood, maximum entropy methods, discriminative training, mixture models, and semi-supervised training methods, as well as deep learning models such as recurrent neural networks, convolutional neural networks, sequence-to-sequence learning, relational learning, and graph neural networks. The hope is that by the end of this course students will have in-depth understanding about information extraction and knowledge graph reasoning as well as the related machine learning models, and can develop practical algorithms and implement systems for solving different knowledge extraction and reasoning problems.

Prerequisite(s): CSCI 567 (Machine Learning), CSCI 544 (Applied Natural Language Processing); Familiarity with probability and algorithms.

Co-Requisite(s): CSCI 567 (Machine Learning), CSCI 544 (Applied Natural Language Processing) **Concurrent Enrollment:** N/A

Recommended Preparation: sufficient mathematical background; general background on optimization; good programming skills

Course Notes

Lecture notes will be available online after each class.

Technological Proficiency and Hardware/Software Required

N/A

Required Readings and Supplementary Materials

- Ren & Han. Mining Structures of Factual Knowledge from Text: An Effort-Light Approach
- Speech and Language Processing, Daniel Jurafsky and James Martin, Prentice-Hall (second edition).
- Christopher D. Manning and Hinrich Schutze. *Foundations of Statistical Natural Language Processing*. MIT Press.
- Christopher M. Bishop. Pattern Recognition and Machine Learning.
- Trevor Hastie, Robert Tibshirani and Jerome Friedman. The Elements of Statistical Learning.
- <u>Convex Optimization</u> (Boyd)
- <u>Deep Learning</u> (Goodfellow & Bengio)
- Deep Neural Methods for NLP (Goldberg)

Description and Assessment of Assignments

What kind of work is to be done and how should it be completed, i.e. how the learning outcome will be assessed. Include any assessment and grading rubrics to be used.

Grading Breakdown

Including the above detailed assignments, how will students be graded overall? Participation should be no more than 15%, unless justified for a higher amount. All must total 100%.

Assigments	Points	% of Grade
HW1	100	10%
HW2	100	10%
Project survey report	100	15%
Project mid-term report	100	15%
Project final presenatation	100	15%
Project final report	100	35%

Grading Scale

	05 400
A	95-100
A-	90-94
B+	87-89
В	83-86
B-	80-82
C+	77-79
С	73-76
C-	70-72
D+	67-69
D	63-66
D-	60-62
_	

F 59 and below

Assignment Rubrics

N/A

Assignment Submission Policy

By email, before 11:59pm of the due date.

Grading Timeline

Assignments will be graded within one week after the due date.

Additional Policies

Late homework policy: **you are given 4 late days** for the assignments and project proposal/survey (no late days for the final project report), to be used in integer amounts and distributed as you see fit. Additional late days will each result in a deduction of 10% of the grade of the corresponding assignment.

Course Schedule: A Weekly Breakdown

	Topics/Daily Activities	Readings and	Deliverable/ Due Dates
		Homework	
Week 1	Class Introduction and Outline.		
Jan 21	- Self-introductions		
	- Course overview		
	Tasks for Knowledge Extraction and		
	Reasoning		
	- source of data; amount of labeled		
	data; closed/open-domain		
Week 2	Sequence tagging & entity	Project team-up,	Project proposals due by end
Jan 24	recognition	prepare proposal	of Jan 27
(make-	- Different problem formulation for		
up)	NER: pattern boostrapping, sequence		
	labeling, etc.		
	- Sequence labeling: HMM, MEC, CRF		
	 semi-supervised models 		
	 pattern-based methods 		
	 co-training, boostrapping 		
	- distant supervision		
Week 3	Entity typing, linking & co-reference	- HW1 (on named	
Jan 28	 supervised learning methods 	entity recognition)	
	 typing under noisy labels 	 project survey 	
	 fine-grained typing models 		
Week 4	Parsing & structured prediction		Project survey due
Feb 4	 dependency parsing 		
	 semantic parsing 		
	- statistical models for structured		
	prediction		
	 neural parsing models 		
Week 5	Neural sequence models		
Feb 11	- Recurrent neural network for		
	sequence tagging		
	- Convolutional neural nets		
	- Character-level & subword methods		
Week 6	Relation Extraction I		HW1 due
Feb 18	- rule-based methods		
	 pattern bootstrapping 		
	- feature-based classifiers		
	Paper presentation		
Week 7	Relation Extraction II	HW2 (on relation	
Feb 25	- neural models	extraction)	
	- distantly-supervised methods		
	Paper presentation		
Week 8	Learning on knowledge graphs		Project mid-term report due
Mar 4	- knowledge graph embedding &		by end of the week
	completion		
	- knowledge-based question		
	answering		
	Paper presentation		

Week 9 Mar 11	No class – spring break	
Week 10	Knowledge reasoning techniques	HW2 due
Mar 18	(guest lecture: Jay Pujara)	
	Paper presentation	
Week 11	Genrative models for NLP	
Mar 25	 seq2seq models 	
	 machine reading comprehension, 	
	text summarization, machine	
	translation	
	Paper presentation	
Week 12	Learning on graph-structured data	
Apr 1	- spectral methods	
	- matrix factorization	
	- multi-relation learning methods	
	- graph neural networks	
	Paper presentation	
Week 13	Low-resources learning for NLP	
Apr 8	(guest lecture: Violet Peng)	
	Paper procentation	
Wook 14	Graph mining and applications	
Apr 15	(Guest lecture by Neil Shah)	
	Course recture by Neir Sharry	
	Paper presentation	
Week 15	Project final presentation	Project final report due by
Apr 22		May 5th.