AME 441a&b SENIOR PROJECTS LABORATORY
SPRING 2019

Laboratory:
MW 10:00 – 12:50
BHE 310

Lecture:
T 11:00-12:20
BHE 301

Professors
Dr. Charles Radovich
RRB 202
(213) 740-5359
radovich@usc.edu

Dr. Akshay Potnuru
RRB 203
(213) 740-9480
tbd

Teaching Assistant
James Croughan
jcrougha@usc.edu

Office/Lab Hours
See Blackboard/Piazza for Faculty and TA Lab Times and Office Hours

Laboratory Technicians
Jeffrey Vargas
vargasje@usc.edu
BHE 310
(213) 740-4304

Rodney Yates
rodneyya@usc.edu

Bill Colvin
wcolvin@usc.edu

Recommended Texts (not required):

Important note to all students registered for AME 441:

During the Spring semester, the senior projects course will consist of students enrolled in both 441a and returning students from the fall who are enrolled in 441b. For most of the class, including lectures, meeting times, and the deliverables schedule, everything will be identical. However, there are some key differences that I will highlight here.

AME 441a: New Projects

Welcome! I’m excited that you’ve decided to spend the semester investigating something that interests you. In contrast to the Fall semester, groups will be smaller. Pair up into a group of two and start thinking about what you want to investigate.

Being in a smaller group is not a greater burden – in fact, it allows you to be more targeted in your project scope. Think about a project that ideally suits your interests and attack it head on. With the resources available, you can achieve more that you think! This is chance to tangibly explore something fascinating and demonstrate to future employers your engineering capabilities.

AME 441b: Returning Projects

Welcome! In 441a, you and your group have already solved the easy problems – now, you must tackle the hard ones. Your group will be working together, as you were last semester, and it is expected that the quality of your deliverables exceeds that from last semester.

Returning groups will be held to a very high standard. Simply enhancing previous data sets is not sufficient and proposals will be graded on how they interpret the previous semester and apply the knowledge learned. It is expected that 441b groups produce publication quality experimental results.
I. Introduction

The aim of this course is to complete an original project which takes you through the entire engineering process. The semester starts with planning and design, and ends with experimental validation. An emphasis on novel experimental work means that one's ingenuity and initiative are a major factor in success. This course gives students the responsibilities associated with an industrial research project while keeping them within a teaching environment. Students will experience similar problems and challenges that will be faced upon graduation and develop a more thorough understanding of the steps involved to complete an actual engineering project.

Students work in groups of two on a project of their choice for the entire semester. Ideally, topics for these projects are provided by the students themselves. However, projects can be selected from a number of ideas suggested by the faculty in the packet supplied on Blackboard. Think about where you want to be next year and make this project the centerpiece of your academic and budding professional portfolio. A well-executed senior project is an excellent interview topic!

The extent of the subjects covered is quite broad. Project topics have ranged from traditional areas such as fluid dynamics, structural mechanics, heat transfer, and dynamic control, to rather obscure and arcane studies on fishing line motion, plant growth in varying pressure environments, anti-lock brakes and the like. The primary requirement in the selection of a topic is that the student must have a strong personal interest. More pragmatically, design, construction and testing should be possible within one semester given the constraints of the lab facilities and a set financial budget. We also encourage students to contact any of the faculty listed in Appendix F and Appendix G directly for ideas in their respective fields of interest and expertise.

The AME 441 schedule compresses an entire design project into a 15 week period. You need to hit the ground running! Prior to beginning the semester you need to form your team, select your project, and conduct a literature review. This allows us to begin the semester with educated discussions on your topic.

Students will be evaluated upon the quality and content of their reports and presentation as well as their performance in the laboratory; this includes cleanliness of work areas and attendance in the scheduled lecture/laboratory sessions. The first deliverable will be the Literature Review where your team will present on your research findings and initial thoughts for your project. Your team will present this in class on Wednesday, January 9th at 10am in BHE 301.

The second deliverable is the project Proposal. Before work can begin on any project, acceptance of this formal, written proposal is required. The proposal is due Friday, January 18th before 5 pm via TurnItIn (submit through Blackboard). The proposal will be promptly returned with feedback so work may begin. In the event that a project is not approved, required changes must be made promptly before proposal re-submission. Work on the project cannot begin until project approval has been given.

Starting Friday, February 15th, written group Progress Reports are due every 3 weeks before 5 pm via TurnItIn. These will be graded not only on technical content and progress made, but also on quality, clarity and professionalism. Proficient technical writing standards apply. See Appendix B for format requirements as well as the progress milestones required.

Each group will give one Oral Presentation on their work to the rest of the class; presentations will take place during the lecture section towards the end of the semester. Lastly, one Final Report of publishable quality will be required by each group on Friday, May 3rd before 5 pm.
II. AME Lab Procedures and Protocol

Safety and Space Management

- **CLOSED-TOE SHOES AND LONG PANTS ARE REQUIRED IN THE LAB AT ALL TIMES. NO EXCEPTIONS!** Shoes need to provide protection; hence, “Toms”, boat shoes, flats, slippers, etc. don’t qualify. Pants need to be pants.
- Safety precautions (gloves, eye protection, hair ties, etc.) are mandatory. Ask a staff member if you are unsure of any safety precautions you should be taking when working in the lab.
- According to University rules, students are not allowed in the lab without supervision. Therefore, all experiments must be performed within the scheduled lab times.
- Store your personal belongings out of walking paths – under work tables for instance. It is important to keep a clear, and safe walkway through the laboratory.
- Keep the lab clean. **No food or drinks** in the lab area. You are welcome to have food or drinks in the hallway, near the stairs, or in the BHE 301 presentation room (outside of AME 341 lab hours).
- **Return all lab equipment to its original location** after use (cables, beakers, drill bits, etc.).
- There is a small engineering library in the BHE 301 presentation room. These resources are to be shared and **are not to leave the BHE 301 presentation room**.

Supply Room and Device Access

- Access to the BHE Supply Room is allowed only with approval of an AME 441 staff member.
- Any/all resources and devices that leave the Supply Room **must** be approved, checked out, and signed for by an AME 441 staff member.
- Please report any/all broken or non-functioning equipment and devices to the staff. This is extremely important, and will save everyone time and trouble in the future!
- When requesting equipment, students must be prepared answer specific questions about their project needs. Why do you need this equipment?
- On some occasions, it becomes necessary to share some equipment with other groups. Under these circumstances all parties involved are expected to be considerate and cooperative.
- **When requesting to have parts fabricated/machined, ensure that your designs are complete** – design by trial and error will not be allowed. Be prepared to thoroughly present and explain your design in order to facilitate the approval and scheduling of part fabrication/machining. See manufacturing notes in Section IV.

Computer/Printing Rules

- Do **not** customize any computer workstations. This includes modifying the desktop, any/all computer settings, or installing any software without staff approval.
- Save files **only** in the following directory: D:\home\JStudent. **Other locations will be deleted!**
- Remember to save your work to the computer’s hard drive before moving it to a USB key or portable storage device. This serves as a backup.
- Printers are available only for printing of assignments, reports, and required materials for AME 441 only.
- When done with a computer workstation, log off and turn off the monitor.
III. Facilities

The AME Lab in BHE has served decades of AME 441 classes and is well stocked with the majority of the tools needed to support a successful project. The lab will provide PC’s, data acquisition devices and software for design, data capture and analysis. Common instrumentation is also available including electric motors, low-power lasers, digital image and video recorders, high-speed cameras, various pressure transducers, thermocouples, etc. If the required instrumentation is not readily available in the lab, it can often be procured from other departments on a loan basis (e.g., a micropipette could be borrowed from the chemistry department).

In addition to basic scientific equipment, the BHE labs have larger test facilities. The AME Lab has a low-turbulence, open-circuit wind tunnel located in BHE 301. The test section measures 46 x 46 x 91 cm, and can provide freestream velocities from 3 m/s to 46 m/s with less than 1% variation from the mean. It is equipped with two, six-component force balances: one is capable of measuring lift and drag forces of up to 67 N and 35 N, respectively, and the other to 12 N. A low-speed water channel, built as a previous AME 441 project, is also available and located in room BHE 110. The test section of this water channel measures 0.18 m x 0.20 m x 0.91 m, and has a test velocity range of 0.05 to 0.15 m/s. Flow visualization can be performed through the transparent, acrylic test section walls. Data acquisition is also possible through a multifunction DAQ device and LabVIEW.

For well-planned projects, advanced AME department facilities can also be made available for AME 441. One such facility is the large water channel in RRB 107. The test section of this water channel has a cross-section of 0.91 m x 0.14 m, and has a usable length of approximately 3.5 m. Test velocities range from 0.12 m/s to 0.40 m/s. Flow visualization is possible through the transparent side walls and drag force measurements can be performed using the existing force balance setup. An Advanced Particle Image Velocimetry (PIV) system, capable of measuring 2-D velocity fields, may also be made available for well-designed projects which require this capability. Due to the limited availability, operational complexity and safety requirements of the PIV system, students who intend to use this system are required to discuss their project with AME 441 instructors and Dr. Luhar before including its use in their project proposal.

IV. Manufacturing

Every AME 441 project will require some fabrication and the AME lab has multiple facilities allowing you to create custom fabricated components for your project. Note, that this is a design course, so all parts must be justified with quantitative reasoning about key design decisions.

The AME lab has a pair of laser cutters. Each cutter has a 60cm x 30cm bed and is capable of cutting 2D shapes from balsa wood, thin plywood and acrylic. When designing parts for AME 441, the laser cutters should be your FIRST thought. Unlike other manufacturing facilities, the laser cutters are capable of producing same day parts for your project. Think about how you can build up multiple 2D shapes into 3D structures. Also think about your structural requirements and if cast acrylic can be a viable material.

The AME lab also has multiple MakerBot 3D printers. While additive manufacturing is an exciting topic in all disciplines of engineering, it is asked that students restrict 3D print jobs to parts and designs that actually need to be 3D printed. The 3D printers have a long lead time and successful prints typically require multiple iterations. 3D printers are not a tool for lazy design. Typically, the majority of jobs submitted for additive manufacture can be produced faster and with higher quality using conventional techniques.

Finally, the AME lab has a full machine shop enabling in-house manufacturing. Rod and Bill have decades of machining experience; if you can think of it, it can likely be made. Students must be involved in the manufacturing of their components and training is available to enable students to craft their own parts. The AME 441 shop is not a place where you submit drawings and walk away. It is a place for you to learn
how things are manufactured by being actively involved in the process. Missed manufacturing appointments will result in parts being bumped from the machining schedule and these delays will cause your project to suffer.

ALL machine shop jobs must be scheduled through Rod Yates and will be completed on a first-come first-served basis. The scheduling deadline for the AME 441 machine shop corresponds with the due date of the first progress report on **February 15**th. Parts approved and submitted by this deadline will set the manufacturing schedule and will have completion priority. It is strongly encouraged that parts be submitted before this deadline.

For all of the above facilities, manufacturing will not be scheduled until the part has been approved by both “Engineering” (AME 441 Instructors) and “Manufacturing” (Jeffrey Vargas: Laser Cutter & 3D printer, Rod Yates or Bill Colvin: Machine Shop). Drawings must be submitted *in-person* and initialed by both “Engineering” and “Manufacturing” staff for complete approval.

Drawings must be professional quality, computer generated and have at a minimum:

- 3-View with Dimensions
- Necessary tolerances
- Part material
- Signature block for approvals

Additional manufacturing facilities are available including the Fab Lab in RRB 114 and the USC machine shop in KAP B-1B (M-F, 6:30 AM – 2:30 PM). If these facilities are used, it is the responsibility of the student to submit and schedule parts.

V. Budget

Each student is allotted approximately $100 for the purchase of expendable materials. While this appears to be a small amount, nearly all of the required components for successful projects are already available in the AME Lab. Typically, project groups will only need to charge 1 or 2 items to their project budget and the majority of groups do not exceed their allotment. The total amount of funding for a project will be based on the budget submitted with the proposal and may exceed the specified amount if it is deemed necessary for the project’s success. Should you need to make a purchase, follow these guidelines:

Prior to making any purchase, **approval is required by your instructor.** The detailed procedure for making purchases from online retailers will be discussed during the first week of class. In general, you will prepare an order, print the detailed summary but do not submit the order confirmation. Bring the printout to your instructor for a signature and give the order summary to the TA in charge of placing the orders.

If your project is able to utilize reusable hardware that is kept in a standard configuration which can be used for later AME 441 semesters, this hardware will not be considered “consumable” and will not be charged against your group’s project budget. Examples include 80/20 channel, diagnostic equipment, tooling, etc. Care must be taken to ensure reusability at the end of the semester and instructor approval is required before orders can qualify for this exemption.

Students may make smaller purchases and be reimbursed upon presentation of an original receipt. **Pre-approval is required from an AME 441 instructor prior to making small purchases.** Items from the Engineering Machine Shop (KAP Basement), Electronic Store (OHE 246), and Chemistry Store (SGM 105) can only be obtained on an Internal Requisition; student purchases from these places cannot be reimbursed.

No reimbursements will be made if the above procedures are neglected. No exceptions!
VI. Grading

Grades are based on both individual and group performance. Descriptions for all deliverables and a sample grade sheet for the oral presentations are provided in the Appendices. All assignments are expected to be of professional quality. Everyone has completed AME 341 and those standards should be followed.

Students will also be graded on their individual performance in the laboratory. To facilitate this, and provide guidance on each group's research, conferences with one or more instructors will be held at regular intervals. During these conferences, current work and problems are to be discussed and evaluated. The instructors should be notified immediately of any difficulties in the research, as delays will have an adverse effect on performance assessment. It is essential that these projects are worked on continuously; waiting until the last few weeks will surely be detrimental to your grade. Successful projects are the result of a sustained effort that begins on week one.

Part of the laboratory performance grade will also be adherence to safety guidelines. Each safety violation will result in a 3 point reduction in your lab performance grade. This is a serious penalty for a serious issue. There is no such thing as a “quick cut” or “quick job.” That is how you quickly cause harm.

All students are required to attend the Oral Presentations. A 10% penalty will be applied to your oral presentation score if absent. Arriving late or leaving early counts as being absent.

Each group is required to keep a laboratory notebook as described in Section VII. This is to be turned in with the final report at the end of the semester. This year we have put added emphasis on the maintenance of this laboratory notebook – incomplete and untidy entries will result in a 5% penalty, applied to your final grade. The notes, thoughts, and sketches contained in the notebook should be informative and useful. Write in this notebook as if you were planning on giving it to another 441 group next year. They should be able to easily continue your project based solely on the information contained within.

Each student must complete or have already completed the mandatory Lab Safety Training and workshop within the first two weeks of labs. Lab work on your project will NOT be permitted until this training has been completed. Failure to complete the training within the announced time frame will result in a 5% penalty on your final grade.

The grade distribution for the course is detailed in Table 1. This distribution is subject to change. Also note that performance in this class is cumulative. It is difficult to write a high-quality Final Report if your project doesn’t begin with a high-quality proposal.

<table>
<thead>
<tr>
<th>Table 1. Final Grade Weight Distribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
</tr>
<tr>
<td>Progress Reports</td>
</tr>
<tr>
<td>Oral Presentation</td>
</tr>
<tr>
<td>Lab Performance</td>
</tr>
<tr>
<td>Final Report</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

VII. Deliverables

Document Submission

Turnitin will be used for submitting most of your group assignments. This includes the Literature Review, Proposal, Progress Reports, and Final Report. Look in \Blackboard\Assignments\ for document submission links. When Peer Evaluations are due, a paper submission is required. These will be submitted (anonymously) to the RRB 202.

File naming convention: name all files submitted to Turnitin starting with your group number. For example:
The first deliverable is the Literature Review. The Literature Review will be delivered as a 10 minute presentation given to the entire class. The idea here is to receive and give valuable feedback that will help with writing the Proposal. These will take place Wednesday, January 9th in BHE 301 at 10am (additional times to avoid conflicts may be required).

The format for this is a brief 10 minute "sales pitch" and should cover the following content: 1) Team members; 2) Topic overview; 3) What has been done before? 4) What are you planning to investigate and how? 5) References. References must contain peer reviewed journals and/or content from engineering textbooks. Not random web pages, wiki's or blogs. Not do-it-yourself/Instructables web links. Real, valuable technical content must motivate your plan of attack. For example, search scholar.google.com and not the regular www.google.com; also, go to libraries.usc.edu and log-in (top right corner) to gain access when you are off campus.

Your team will be evaluated on: Clarity, oral presentation delivery, evidence of research, and evidence of thought for the path forward. You need to inform the audience of the subject matter and convince them a) there is engineering/scientific merit in the proposed investigation, b) there is a clear objective that can be designed for, c) the methods needed to investigate the subject are achievable (can be manufactured/constructed/assembled), and d) there is something that can be measured that will help inform your investigation.

The Literature Review will just scratch the surface and prove that you are on an achievable path. The fine details will get flushed out in your Written Proposals.

The second deliverable is the Project Proposal. At a minimum, the proposal should follow the guidelines provided in Appendix A. Only one document per project is required. Since major rewrites are sometimes required for project approval, early submission of the proposal is strongly encouraged. It is also recommended that you discuss any ideas and/or approaches with your instructors, TA's and lab staff before and during this process. Remember, work may not begin until the project has been approved.

Table 2: Schedule of Deliverables

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature Review</td>
<td>January 9th, 10am, BHE 301</td>
</tr>
<tr>
<td>Project Proposal</td>
<td>January 18th, 5 pm</td>
</tr>
<tr>
<td>Progress Report 1</td>
<td>February 15th, 5 pm</td>
</tr>
<tr>
<td>Progress Report 2</td>
<td>March 8th, 5 pm</td>
</tr>
<tr>
<td>Progress Report 3</td>
<td>April 5th, 5 pm</td>
</tr>
<tr>
<td>Oral Presentations</td>
<td>TBD Late March/Early April</td>
</tr>
<tr>
<td>Laboratory Notebook</td>
<td>May 3rd, 5 pm</td>
</tr>
<tr>
<td>Final Report</td>
<td>May 3rd, 5 pm</td>
</tr>
</tbody>
</table>
A progress report is due every three weeks before 12 pm, starting Friday, February 15th. Only one per project is required and the contents should follow the suggested guidelines presented in Appendix B. A total of three progress reports will be handed in throughout the semester. These will be graded on the amount of project progress achieved, as well as clarity in technical communication.

With every progress report, each group member is required to submit a Group Evaluation Form which can be found in Appendix E. Forms will be kept confidential; submit these forms to RRB 202 (slide under the office door). These forms are intended to assess the involvement of each group member and the group dynamics of each team.

Oral presentations will be given during the lecture sessions starting in late-March. The order of presentations will be determined by lottery. Presentations will be 20 minutes long, which includes time for questions. A sample grade sheet for the oral presentation can be found in Appendix D. On your presentation day, arrive at lecture 15 minutes prior to the start of class and upload your file to the class computer.

Each group is required to maintain a laboratory notebook and/or binder. The notebook should be a record of the design process. Raw data, calculations, construction and set-up drawings, uncertainty analysis, etc., should all be contained in this notebook. Highlight problems encountered and how they were solved. The notebook should be kept neat and legible so that an individual assigned to take over the project at a later time can easily continue the project. In the back of the notebook, a log of hours spent on the project for each group member should be detailed. With each entry, a brief description of what was done at particular times should be listed as well. Noting the hours logged will help to create a plan of corrective action if/when it appears that time or effort is running short. This notebook is to be submitted with the final report and will be graded.

The Final Report is due Friday, May 3rd before 5 pm via TurnItIn. Each project is required to submit one final report. Late reports will be penalized (-10% per day, including the weekend). The suggested format for the final report can be found in Appendix C.

INCLUDE YOUR GROUP #, DATE, TITLE AND NAMES OF THE AUTHORS ON EVERYTHING

Appendix A

Suggested Proposal Format

<table>
<thead>
<tr>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction/Historical Background</td>
<td>1</td>
</tr>
<tr>
<td>2. Theory/Basic Equations</td>
<td>1-3</td>
</tr>
<tr>
<td>3. Experimental Setup/Procedure (including a sketch of the apparatus)</td>
<td>1-4</td>
</tr>
<tr>
<td>4. Cost Estimate</td>
<td>1</td>
</tr>
<tr>
<td>5. Timetable</td>
<td>1</td>
</tr>
<tr>
<td>6. Reference List</td>
<td>1</td>
</tr>
</tbody>
</table>

The objective of the proposal is to convince the reader that your project will provide useful information and can be successfully completed within the time, budget, and other given constraints. A proposal isn’t meant to present sweeping, general knowledge. It is intended to be a concise document limited in scope to the specific project under development. Write your proposal in a manner which can be easily followed by a competent engineer even if they are not a specialist in your project’s field. A good rule is to define any terms or concepts that you were not familiar with before you started your literature search. As a test, have one of your classmates (not a group mate) read your proposal to see if they understand what you plan to do! The proposal should be no more than 10 pages of typed double-spaced text.

For those of you in AME 441b your proposal can and should be based upon your final report from last semester. What did you learn from your project and what concrete pathways can you follow to improve your knowledge? Quantify the “hard problems” you want to solve and describe how you’ll approach the coming semester.

Although short in length, the proposal must be thorough. The reader must be convinced that you have researched your topic and that you have sufficient understanding to produce meaningful results. Reference previous and current work and give legitimate reasons for conducting the experiment. Your goal must be explicitly stated.

The proposal also must present a clear picture of how you are going to conduct your experiment. Calculations and results are required which enable an intelligent preliminary design. Additionally, it is highly important that the proposal contain an estimate of your expected results. Determine what you will need to both produce and capture meaningful data.

What facilities and equipment will you be using? How large will the model be? What are the important parameters? What kind of data will be taken? You should have researched your topic in enough detail and performed some initial calculations to be able to answer these types of questions. Include a sketch of the proposed set-up along with calculations, graphs and figures that will help explain what you will do.

The cost estimate must provide an accurate account for the total cost of your project. It should include all specific equipment, devices, materials, etc. that are required to perform and complete your experiment. This should be presented in a tabular format. A clear distinction must be made between the devices and materials that are currently available in the AME Lab and what needs to be purchased using your budget.

The timetable should be presented as a Gantt chart, highlighting the project milestones required for completion, resources available, and course deliverables due throughout the semester. The Gantt chart should contain large tasks which are broken down into additional sub-tasks. Tasks should be assigned to individuals. Ensure that this is readable so the proposed timeline can be assessed.
Appendix B

Progress Report Format

Progress reports should be written in third person past tense, as with all technical communications. The task of writing the progress report for the group should be distributed evenly between the group members. These reports will be graded primarily on content. However, professional quality documents are still the expectation. Progress reports should ideally be no longer than 5 pages. Submit all Progress Reports via TurnItIn on Blackboard before the stated date and time.

Each progress report will have associated deliverables and project milestones. Failure to meet these progress requirements will have a severe impact (i.e. >50% deduction) on your progress report grade.

1) Progress Report 1: Due Friday February 15th before 5pm

Project Milestones:
- Completed experimental / hardware design
- Identification of all essential project components
- Issues identified in the proposal have been resolved

Deliverables:
- Drawings that have not been previously been approved must be submitted with the proposal for approval. All construction drawings must be completed and approved with submission of this report. This progress report is the last time to seek approval for drawings before the machining scheduling deadline.
- Orders for enabling components that have not yet been placed must be submitted with the proposal for approval. Enabling components includes items essential for project completion such as sensors, non-stock hardware, etc. If components have been ordered already, list them along with their estimated lead time.

2) Progress Report 2: Due Friday March 8th before 5pm

Project Milestones:
- Project is under construction and substantial integration has been completed
- Issues identified in Progress Report 1 have been resolved

Deliverables:
- Preliminary data and analysis. This should/could include calibration data for sensors, results from mechanical integration, results from complex manufacturing, etc. Progress should be quantitative and specific goals will be discussed on a group by group basis.
- Documented integration of project components and identification of any modifications required beyond the initial design.

3) Progress Report 3: Due Friday April 5th before 5pm

Project Milestones:
- Project integration is complete
- Issues identified in Progress Report 2 have been resolved

Deliverables:
- PROJECT DATA. This progress report requires you to have data that directly relates to your research question. You must have a functional device / experiment.
- Test matrix for the remainder of the semester. What is your test plan and how will you use the remaining weeks to provide a concrete answer to your “research question”?

All progress reports should include the following:
➢ **Cover Page:** Project Title, Group Members, Group Number, Date Range and one paragraph project abstract

➢ **Progress Update:** The main contents of the progress report. Specifically detail what was accomplished during the previous three weeks. Include calculations, descriptions of designed components, drawings etc. – any and all information helpful to assessing your progress. If you have acquired data, present results and discuss their meaning. This is what you’ve **done** and should be presented in a **professional**, third person past tense format.

➢ **Project Setbacks:** What issues or problems were encountered? Don’t just list problems – you also need to present a path forward. Include what happened, plans for mitigation and the ultimate effect on your timeline. Note that machining, shipping and other delays do **not** count as project setbacks. These inevitabilities should have been considered in your project planning.

➢ **Future Work:** A concise explanation of the tasks to be performed during the upcoming progress period. Identify group members who are responsible for completing these tasks.

➢ **Updated Gantt Chart**

➢ **Peer Eval Forms:** *Each* group member is required to submit a confidential Group Evaluation form with each progress report. A separate submission box will be provided. The eval form is given in Appendix E.

INCLUDE YOUR GROUP #, DATE, TITLE AND NAMES OF THE AUTHORS ON EVERYTHING

Appendix C

Suggested Format for Final Report

<table>
<thead>
<tr>
<th>Section Title</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract (on title page)</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>2-4</td>
</tr>
<tr>
<td>Experimental Technique</td>
<td>2-4</td>
</tr>
<tr>
<td>Results</td>
<td>3-6</td>
</tr>
<tr>
<td>Discussion</td>
<td>2-3</td>
</tr>
<tr>
<td>Conclusion</td>
<td>1</td>
</tr>
<tr>
<td>References</td>
<td>1</td>
</tr>
<tr>
<td>Appendices</td>
<td>No more than 5</td>
</tr>
</tbody>
</table>

Note: No more than 25 pages of typed double spaced text, including appendices. Look at long-format journal articles for the tone and style required of a professional project report.

Assume the reader knows nothing about your work! The final report should stand alone with no references to your proposal or progress reports. (You may of course reference other papers or books.) The introduction should state the goal/objective, give some historical background and/or the state of the art of the subject, and any theoretical derivations pertinent to the project.

The experimental technique section should give the important details of the set-up (a schematic must be included) as well as the procedure. Mention all the equipment used, type of data taken, how the data was processed, etc. When writing this section, keep in mind that you want to give the reader the impression that you were careful when you took your measurements and your data is reliable. Towards this end you can mention your estimates of uncertainty without going into excessive detail. (Do not clutter the main body of your final report with lengthy uncertainty derivations. Detailed uncertainty analysis should be in your lab notebook and may be included in an appendix if further explanation is required in your report.)

Do not go into a narration of all the trouble you went through to get to your final set-up! While troubleshooting does take up a tremendous amount of time, the process isn’t necessarily “report worthy.” Describe what worked and why.

Results and Discussion can be two separate sections or combined. It can even be subdivided into the different aspects of the investigation. The only requirement is that you present and interpret your results and then discuss them in a manner that can be easily followed. This is by far the most important part of your report and should be worded carefully so as to enhance the virtues of your work.

In the Conclusion, assess whether you have achieved your goal/reached your objective as stated in the Introduction. You may restate your important findings briefly. Also, you could suggest an alternate approach to solving the same problem or, talk about improvements to the work and applications.
Appendix D

AME-441 Senior Projects Laboratory

Oral Presentation Grade Sheet

<table>
<thead>
<tr>
<th>Group #</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title of Project:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name(s) of Speakers:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Grade for each category is based on the scale shown below.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Comments</th>
</tr>
</thead>
</table>

1. **Organization and Delivery**
 (Was project clearly defined? Continuous thoughts? Speech easy to understand? Visual aids: timing, sufficient number of slides, neatness, clarity, etc.)

 Grade: (35)

2. **Technical Content**
 (Scientific merit appraised? Symbols and parameters defined? Technically sound arguments? Logical methods of experimentation and evaluation? Etc.)

 Grade: (50)

3. **Overall Performance**
 (Did presentation hold audience’s attention? Questions answered, etc.)

 Grade: (15)

Total Score

(100)
Appendix E

AME-441 Senior Projects Laboratory

Group Evaluation Form

Although all Progress Reports and the Final Report are turned in as a group, each student is required to submit the following Group Evaluation Form with each of these assignments. Turn this form in on the same day. For confidentiality, slide these forms under Dr. Radovich’s office door (RRB 202).

Use this form to evaluate the contributions made to your AME 441 Senior Project by all members of your group (including yourself) during the given period. In the table provided below, print the names of all group members and assign a score for each performance category. Rank each category on a scale of 0 to 4 (0 being the lowest; 4 being the highest); don't forget to rate your performance as well. You should provide specific comments for each team member in the space provided. The scoring guideline is as follows:

0 = Poor, would have been better without
1 = Below average, rarely met expectations
2 = Average, fulfilled expectations of the group
3 = Above average, occasionally exceeded expectations
4 = Outstanding! Often exceeded expectations

<table>
<thead>
<tr>
<th>Team Member NAME</th>
<th>Cooperation</th>
<th>Dependability</th>
<th>Participation</th>
<th>Quality of Work</th>
<th>Interest and Enthusiasm</th>
</tr>
</thead>
<tbody>
<tr>
<td>your name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix F

ASTE Department Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Area of Interest</th>
<th>Office</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. D. Erwin</td>
<td>Spacecraft propulsion, optics and optical instruments, kinetics of gases and plasmas</td>
<td>RRB 222</td>
<td>erwin@usc.edu</td>
</tr>
<tr>
<td>Prof. D. Barnhart</td>
<td>Spacecraft design, bus architecture, mission concepts and testing</td>
<td>barnhart@serc.usc.edu</td>
<td></td>
</tr>
<tr>
<td>Prof. M. Gruntman</td>
<td>Spacecraft and space mission design, propulsion, space physics, space sensors and instrumentation, space plasmas.</td>
<td>RRB 224</td>
<td>mikeg@usc.edu</td>
</tr>
<tr>
<td>Prof. J. Kunc</td>
<td>Atomic and molecular interactions, transport of particles and radiation in non-equilibrium gases and plasmas, molecular dynamics, classical and statistical thermodynamics.</td>
<td>RRB 230</td>
<td>kunc@usc.edu</td>
</tr>
<tr>
<td>Prof. A. Madni</td>
<td>Complex system analysis and design; complexity management; socio-technical systems; modeling and simulation; model based engineering; resilient systems; integration of humans with adaptable systems; STEM education simulations/games</td>
<td>RRB 201</td>
<td>azad.madni@usc.edu</td>
</tr>
<tr>
<td>Prof. H. Schorr</td>
<td>Artificial intelligence, advanced computing systems, information technology</td>
<td></td>
<td>schorr@isi.edu</td>
</tr>
<tr>
<td>Prof. F. Settles</td>
<td>Engineering management, integrated management and design, quality management, manufacturing for biomedical/biotechnical applications</td>
<td>GER 2126C</td>
<td>settles@usc.edu</td>
</tr>
<tr>
<td>Prof. J. Wang</td>
<td>Electric propulsion, space environment and spacecraft interactions, particle simulation algorithms for gases and plasmas, microfluidics</td>
<td>RRB 216</td>
<td>josephjw@usc.edu</td>
</tr>
</tbody>
</table>

Appendix G

AME Department Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Area of Interest</th>
<th>Office</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. I Bermejo-Moreno</td>
<td>Computational fluid mechanics, turbulent flows, fluid structure interaction, combustion, hypersonic propulsion, high performance computing</td>
<td>RRB 215</td>
<td>bermejom@usc.edu</td>
</tr>
<tr>
<td>Prof. C. Campbell</td>
<td>Two-phase flow, flow of granular material, heat transfer, slurry flows, fluidized beds, comminution, particle fracture</td>
<td>OHE 400E</td>
<td>campbell@usc.edu</td>
</tr>
<tr>
<td>Prof. J. Domaradzki</td>
<td>Computational fluid mechanics, environmental and geophysical fluids, turbulence</td>
<td>RRB 215</td>
<td>jad@usc.edu</td>
</tr>
<tr>
<td>Prof. F. Egolfopoulos</td>
<td>Aerodynamic and Kinetic Processes in Flames, High-speed air-breathing propulsion, Microgravity Combustion, Mechanisms of Combustion-Generated Pollutants, Heterogeneous Reacting Flows, Conventional and Alternative Fuels, Detailed Modeling of Reacting Flows, Laser-Based Experimental Techniques</td>
<td>OHE 400B</td>
<td>egolfopo@usc.edu</td>
</tr>
<tr>
<td>Prof. H. Flashner</td>
<td>Dynamics and control of systems, control of structurally flexible systems, analysis of nonlinear systems, biomechanics</td>
<td>OHE 430E</td>
<td>hflashne@usc.edu</td>
</tr>
<tr>
<td>Prof. R. Ghanem</td>
<td>Risk assessment and mitigation, computational mechanics and computational stochastic mechanics, dynamics and identification, inverse problems and optimization under uncertainty, multiscale modeling; applications of these to problems in science and engineering</td>
<td>KAP 254</td>
<td>ghanem@usc.edu</td>
</tr>
<tr>
<td>Prof. S. K. Gupta</td>
<td>Computer Aided Design, Manufacturing Automation, and Robotics</td>
<td>OHE 430G</td>
<td>skgupta@usc.edu</td>
</tr>
<tr>
<td>Prof. Y. Jin</td>
<td>Collaborative engineering, design theory and methods, knowledge-based design and manufacturing systems, intelligent agents for engineering support</td>
<td>OHE 400D</td>
<td>yjin@usc.edu</td>
</tr>
<tr>
<td>Prof. E. Kanso</td>
<td>Dynamical systems, animal hydrodynamic propulsion</td>
<td>RRB 214</td>
<td>kanso@usc.edu</td>
</tr>
<tr>
<td>Prof. M. Luhar</td>
<td>Turbulence, Environmental Fluid Mechanics, Flow-Structure Interaction</td>
<td>OHE 400C</td>
<td>luhar@usc.edu</td>
</tr>
<tr>
<td>Prof. P. Newton</td>
<td>Nonlinear dynamical systems, fluid mechanics, vortex dynamics, probabilistic game theory, mathematical modeling of cancer metastasis</td>
<td>RRB 221</td>
<td>newton@usc.edu</td>
</tr>
<tr>
<td>Prof. O. Safadi</td>
<td>Structural Dynamics, finite element, stress analysis, fracture mechanics</td>
<td>OHE 430L</td>
<td></td>
</tr>
<tr>
<td>Prof. N. Pérez-Arcambia</td>
<td>Mechatronics, robotics, feed-back control, signal processing, dynamics, applied optics, fabrication of microrobots, and biologically inspired engineering</td>
<td>OHE 430I</td>
<td>perezara@usc.edu</td>
</tr>
<tr>
<td>Prof. P. Ronney</td>
<td>Combustion, micro-scale power generation and propulsion, biophysics and biofilms, turbulence, internal combustion engines and control systems, low-gravity phenomena, radiative transfer</td>
<td>OHE 430J</td>
<td>ronney@usc.edu</td>
</tr>
<tr>
<td>Prof. S. Sadhal</td>
<td>Drops and bubbles in acoustic fields, thermo-capillary flows with drops in low gravity, heat conduction in composite solids</td>
<td>OHE 400G</td>
<td>sadhal@usc.edu</td>
</tr>
<tr>
<td>Prof. G. Shiflett</td>
<td>Kinematics and dynamics of mechanical systems, computer-aided design, optimal design techniques, micro-electromechanical systems</td>
<td>OHE 430F</td>
<td>shiflett@usc.edu</td>
</tr>
<tr>
<td>Prof. G. Speeding</td>
<td>Geophysical fluid dynamics, animal aero- and hydrodynamics, turbulence</td>
<td>OHE 430B</td>
<td>geoff@usc.edu</td>
</tr>
<tr>
<td>Prof. A. Uranga</td>
<td>Fluid mechanics, aerodynamics, computational fluid dynamics, aircraft design, airframe-propulsion system integration, boundary layer ingestion</td>
<td>RRB 218</td>
<td>auranga@usc.edu</td>
</tr>
<tr>
<td>Prof. B. Yang</td>
<td>Dynamics, vibration and control of mechanical systems, distributed-parameter systems, modeling and control of space structures, computational mechanics</td>
<td>OHE 400F</td>
<td>bingen@usc.edu</td>
</tr>
</tbody>
</table>