Chemistry 625
Chemical Applications of Magnetic Resonance Spectroscopy

Spring 2019

Instructor: Prof. Ralf Haiges
Office: ACB 201, Tel.: x03197, email: haiges@usc.edu

Days and Time: Tue. & Th., 9.30 a.m. to 10.50 a.m.
Class Location: SGM226

This course will not have any formal prescribed texts. Material from the following suggested books will be used from time to time.

Exams: 2 Midterm Tests (40%), Final Term Paper on selected topics (40%), Occasional problem sets (20 %).

Syllabus: Outline of the material that will be covered.

- Introduction to Nuclear Magnetic Resonance (NMR) Spectroscopy
- Physical Aspects of NMR and Basic Theory- Single Pulse Experiment
- FT NMR
- Experimental Aspects
 - 1H NMR spectra of Organic Molecules
 - 1H NMR Chemical Shifts and Spin-Spin Coupling Constants
 - Origin of Chemical Shifts and Coupling Constants
 - 13C and 19F NMR Spectroscopy
- Spin Decoupling
- NMR of Other Nuclei
- Dynamic NMR
- CIDNP
- Multiple Pulse Experiments
- Polarization Transfer
- Spectral Editing
- Connectivity through Bonds, Space and Chemical Exchange
- Two Dimensional NMR
- NMR of Solids
- Imaging
- Theoretical Methods (IGLO, GIAO)
NMR Bibliography

"NMR Basic Principles and Progress", Springer Verlag, Volumes 1-33. Each volume is dedicated to a particular nucelus or technique.

