SSCI 582 (35695), Spatial Databases

Syllabus

Units: 4

Term – Day – Time: Fall 2018, Online

Location: Online

Instructor: An-Min Wu, Ph.D.

Office: AHF B55B

Regular Office Hours: Tuesdays, 3 - 4 p.m. and Thursdays, 11 a.m. - 12 p.m. PT via Blue Jeans – please contact me via email in advance to ensure I will be online. Also available most days and times by appointment via email

Contact Info: anminwu@usc.edu, 213-740-2876, www.bluejeans.com/6137352004

Library Help: Andy Rutkowski

Office: VKC Library 36B

Office Hours: Tuesdays 10 am-12 pm PT and Thursdays 4:30-5:30 pm PT

Contact Info: arutkows@usc.edu, 213-740-6390 (office), http://bit.ly/andyhangout

IT Help: Richard Tsung

Office: AHF B57E

Office Hours: By appointment

Contact Info: ctsung@usc.edu, 213-821-4415 (office)
Course Scope and Purpose

Geographic information systems (GIS) are fundamentally information systems, typically built on database management technologies. Although GIS offers special facilities for storing and manipulating spatial data, much of the functionality provided by GIS is shared with conventional database software and its ubiquitous Structured Query Language (SQL). Thus, understanding database principles is the foundation for mastering the technical aspects of GIS.

This course provides a high-level tour of the theoretical underpinnings of databases containing both spatial and tabular data, as these are integrated into GIS. However, the core objective of the course is a practical one: to understand the fundamental principles of the design and implementation of well-conceived spatial databases, especially Esri geodatabases, and be able to manipulate them both inside and outside of GIS.

In addition, this course serves a diverse audience given its role as a required course for the Geographic Information Science & Technology M.S. and Graduate Certificate Programs, and as an elective course in the Spatial Informatics M.S. Program. The different student audiences are provided a variety of options in working with core geospatial datasets throughout the semester that best coincide with their personal academic and career goals.

In this course we examine the fundamentals of relational, object-oriented, and unstructured databases. A major benefit of the relational model is that it provides a metaphor that is closer to the way humans think about data than did previous database models. Yet within GIS, some authors have argued that the object-oriented model provides an inherently more suitable basis for storing geographical data than the relational model. The unstructured model is increasingly being used to support applications including big data storage and retrieval (e.g. Twitter, Facebook, Google). The influence of object-oriented concepts has become steadily more dominant throughout virtually every aspect of modern computing. Anyone wishing to pursue a career in GIS, in fact in any aspect of computing, should gain an understanding of both the relational and object-oriented models with respect to spatial databases.

Learning Outcomes

When you have completed this course, you will be able to:

- Discuss the complexity of the geographic world and techniques for modeling it in a computer.
- Explain the strengths and limitations of various databases and non-relational structures for spatial data, including those supported by Esri’s ArcGIS platform and open source systems.
- Use SQL fragments and/or statements as appropriate to interrogate spatial databases to accomplish data loading, maintenance, map production, and analysis.
- Define a geographical realm of interest, model that realm diagrammatically and narratively, and implement the model in a geodatabase.
Prerequisite(s): SSCI 581 or permission of the instructor
Co-Requisite(s): None

Course Structure

The main theoretical concepts are provided through a directed reading of the text *Spatial Database Systems: Design, Implementation and Project Management*. The course readings will emerge as a collection of reading notes that provide the basis for an informed review of most chapters. Additional readings are assigned to expand on the text when needed.

This course will unfold on a weekly basis. When possible, assignments will be given in advance, but usually they will be posted on or before Mondays. Practical exercises utilize unpublished and published tutorial materials using the ArcGIS platform, and a final project allows students to demonstrate their ability to apply spatial analytical tools in an appropriate, informed manner.

This is a four credit, one semester course. Students should expect to spend 10-15 hours per week completing the work in this course.

Technological and Communication Requirements

ArcGIS is provided online via the SSI Server; hence, you do not need to install it on your own computer. Instead, every student must have the following technology requirements:

- A computer with a fast Internet connection.
- A functional webcam and a microphone for use whenever a presentation or meeting is scheduled.
- An up-to-date web browser to access the SSI Server.

SSI Server and Tech Support – This course utilizes the SSI Server which is a virtual desktop giving access to many different professional software. If you are unable to connect to the server or experience any type of technical issues, send an email using your USC account to SSI Tech Support at spatial_support@usc.edu making sure to copy (cc) me on the email.

Communications – This is a distance learning course, so most of our interactions will be asynchronous (not at the same time). All materials to be handed in will be submitted via Blackboard. It is each student's responsibility to stay informed about what is going on in our course. In addition to email about time-sensitive topics, any important announcements will be posted on the Announcement page in Blackboard. Be sure to check these each time you log onto Blackboard.

I will send via email through Blackboard any notices that are time sensitive. Please be sure that you read as soon as possible all email sent from Blackboard or from me. Do not ignore course email until the day before assignments are due. Also double check to be sure that email sent from the USC blackboard account does not go into your junk mail!
While I am usually on-line all day and will probably respond to emails from students very quickly, I will endeavor to respond to all email within 24 hours of receipt, aiming for no more than 72-hours delay. In the rare case when I expect to be off-line for more than 72 hours, I will post an announcement on the Blackboard site.

Discussion forums – On the Blackboard site, I will post a series of discussion threads relevant to various sections of the course. Discussions provide a key means for student-to-student discussion and collaboration that can replicate the face-to-face contact you may have experienced in traditional classrooms. Here, students can provide support to each other while working on their assignments, sharing hints and helpful tips, as you would in a classroom laboratory. Please post your questions about assignments there, as you would ask them publically in the classroom. I monitor the discussion threads and offer comments when necessary, but more importantly, consider the discussion board a key way to connect with your classmates and share your discoveries.

Required Readings and Supplementary Materials

The required textbook for this course is:

- Yeung, Albert K. W., and G. Brent Hall. 2007. *Spatial Database Systems: Design, Implementation and Project Management*. Dordrecht: Springer. While you may purchase this book if you wish to own a bound copy, it is available online through the USC Libraries. Sign on to the USC Libraries and search for this title. Used copies of this book are widely available online, so there is no need to pay the full retail price.

Supplementary readings will be assigned from various sources including:

As well, for several of the assignments in this course, you will conduct online library research to find articles that apply specific techniques in an application area of your choice.

Description and Assessment of Assignments

Weekly Assignments

Your grade in this course will be determined on the basis of several different assessments.

Resume Assignment – 1 worth 2 points. We require all current students to post and maintain a public resume, short biography and recent photo on our shared SSI Student Community Blackboard site. Please prepare your resume in the SSI template which will be provided to you. Unless you opt out, your resume will be included in the Spatial Sciences Institute Graduate Programs Resume Book. This resume book is compiled annually and, along with our web presence, is used to promote our programs, and more importantly, your skills, experience and professional aspirations.

Tutorials – 5 worth a total of 35 points. Due in the weeks between reading assignments, hands-on tutorials will be used to practice the techniques explored in theory in the text. At the completion of each tutorial, you will prepare a brief written report to demonstrate that you have completed it.

Reading Assignments – 5 worth a total of 20 points. These will focus on the text and other assigned readings. Their objective is to help you evaluate and integrate the information you have acquired from the course readings. Some of these will involve discussions and collaborative work, most will be individual efforts. Others will stimulate in-depth investigation into the ontology and semantics of core geospatial datasets integrated into tutorials.

Discussions – 5 worth a total of 10 points. Structured discussions will focus on combinations of theory and practice. You will post new message and replies to messages posted by your classmates (i.e. two per forum) at specified times throughout the semester.

Wiki Assignments – 5 worth a total of 10 points. Students will utilize new knowledge gained from discussions, readings and hands-on assignments to build toward the final project through a series of peer-reviewed implementations of lessons posted within Blackboard Wikis.

Final Project

To integrate your learning of all the material covered in the course, in the final project, you will design, undertake, and report on an individually-chosen spatial database project that will be the context of discussion in many of the assignments throughout the semester that will be used to
build toward the final project. The project components will be due at different times throughout the semester to build gradually on the material presented in the course. All points for project components will be assigned using a grading rubric provided at the time the project assignment is posted. The four components of the Project are:

Proposal - 3 points. A brief description of the spatial question(s) you would like to ask or the spatial problem you want to solve and briefly how you plan to solve it.

Geodatabase Design & Implementation Video – 5 points. A video illustrating your overall spatial database design and functionality.

Presentation - 5 points. A presentation made on-line via Blue Jeans, open to all students in the course.

Final Project Report - 10 points. A written report on methods, data sources, and resulting database structure.

Grading Breakdown

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Number</th>
<th>Points Each</th>
<th>Total Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly Assignments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resume Assignment</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tutorials</td>
<td>5</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>Reading Assignments</td>
<td>5</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Discussions</td>
<td>5</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Wiki Assignments</td>
<td>5</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Project Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposal</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Geodatabase Video</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Presentation</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Final Report</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>

Assignment Submission Policy

Unless otherwise noted in the course schedule, all assignments are *due by 11:59 pm PT on Tuesdays or Thursdays*. Project components have different due dates as indicated on the course schedule below. Your attention to on-time assignment submission is essential if I am to meet my goal to return comments on your submitted assignments before the next one is due. Sometimes this is impossible, so I will post a notice on anticipated delays if needed.

Strict penalties apply for late assignments as follows:

- All assignments will be penalized 2 points up to FOUR days late. No points will be given for submissions more than FOUR days late. Note that all assignments worth 2 points will receive 0 points if submitted late.
- Additionally, no written work will be accepted for grading after 5 pm PT on the last day of classes.
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/20</td>
<td>Getting Started</td>
<td>Longley et al. (2005) Ch.3, pp. 63-83 Resume Assignment Reading Assignment 1</td>
<td>Resume Assignment: Thursday, 8/23</td>
</tr>
<tr>
<td>2</td>
<td>8/27</td>
<td>Technological Context</td>
<td>Yeung & Hall (2007) Ch.1 Zeiler (2010) Ch.1 Tutorial 1 Discussion 1</td>
<td>Reading Assignment 1: Tuesday, 8/28</td>
</tr>
<tr>
<td>4</td>
<td>9/10</td>
<td>Semantics and Ontology</td>
<td>Hunter (2002) Tutorial 2 Reading Assignment 2</td>
<td>Discussion 2: Tuesday, 9/11</td>
</tr>
<tr>
<td>7</td>
<td>10/1</td>
<td>Esri Geodatabases (I)</td>
<td>Tutorial 3 Discussion 4</td>
<td>Reading Assignment 3: Tuesday, 10/2</td>
</tr>
<tr>
<td>8</td>
<td>10/8</td>
<td>Database Mechanics</td>
<td>Yeung & Hall (2007) Ch.3, from p. 79 Reading Assignment 4: Normalization & Generalization</td>
<td>Discussion 4: Tuesday, 10/9</td>
</tr>
<tr>
<td>9</td>
<td>10/15</td>
<td>Esri Geodatabases (II)</td>
<td>Wiki Assignment 1 Tutorial 4</td>
<td>Reading Assignment 4: Tuesday, 10/16</td>
</tr>
<tr>
<td>10</td>
<td>10/22</td>
<td>Representing Time</td>
<td>Peuquet (1999) Wiki Assignment 2</td>
<td>Wiki Assignment 1: Tuesday, 10/23 Final Project Proposal: Wednesday, 10/24</td>
</tr>
<tr>
<td>Week</td>
<td>Topic</td>
<td>Readings and Assignments</td>
<td>Deliverables/Due Dates</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Week 12</td>
<td>Documentation</td>
<td>Yeung & Hall (2007) Ch.5 & 6</td>
<td>Wiki Assignment 3 and Reading Assignment 5: Tuesday, 11/6</td>
<td></td>
</tr>
<tr>
<td>11/5</td>
<td>Final Project Week 5</td>
<td>Wiki Assignment 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Project Geodatabase – Data, metadata, design, queries and maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tutorial 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 13</td>
<td>Final Project Week 6</td>
<td>Wiki Assignment 5</td>
<td>Wiki Assignment 4: Tuesday, 11/13</td>
<td></td>
</tr>
<tr>
<td>11/12</td>
<td></td>
<td>Final Project Geodatabase – Reflections</td>
<td>Tutorial 5: Thursday, 11/15</td>
<td></td>
</tr>
<tr>
<td>Week 14</td>
<td>Final Project Week 7</td>
<td>Finalize Project Geodatabase Discussion 5</td>
<td>Work on Final Project</td>
<td></td>
</tr>
<tr>
<td>11/19*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/21-11/25 are university holidays</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 15</td>
<td>Final Project</td>
<td>Final Project Completion</td>
<td>Wiki Assignment 5: Monday, 11/26</td>
<td></td>
</tr>
<tr>
<td>11/26</td>
<td></td>
<td>Geodatabase Design Implementation & Video: Thursday, 11/29</td>
<td>Final Report & Final Discussion 5: No later than 5 pm PT on Friday, 11/30</td>
<td></td>
</tr>
<tr>
<td>Final Exam Week 12/5-12/12</td>
<td>Final Project</td>
<td>Presentations</td>
<td>Final Project Presentation: Tuesday, 12/4- Wednesday, 12/5</td>
<td></td>
</tr>
</tbody>
</table>

Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in *SCampus* in Part B, Section 11, “Behavior Violating University Standards” https://policy.usc.edu/scampus-part-b/. Other forms of academic dishonesty are equally unacceptable. See additional information in *SCampus* and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

Support Systems

Student Counseling Services (SCS) - (213) 740-7711 – 24/7 on call

Free and confidential mental health treatment for students, including short-term psychotherapy, group counseling, stress fitness workshops, and crisis intervention. https://engemannshc.usc.edu/counseling/
National Suicide Prevention Lifeline - 1-800-273-8255
Provides free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7 days a week. http://www.suicidepreventionlifeline.org

Relationship & Sexual Violence Prevention Services (RSVP) - (213) 740-4900 - 24/7 on call
Free and confidential therapy services, workshops, and training for situations related to gender-based harm. https://engemannshc.usc.edu/rsvp/

Sexual Assault Resource Center
For more information about how to get help or help a survivor, rights, reporting options, and additional resources, visit the website: http://sarc.usc.edu/

Office of Equity and Diversity (OED)/Title IX compliance – (213) 740-5086
Works with faculty, staff, visitors, applicants, and students around issues of protected class. https://equity.usc.edu/

Bias Assessment Response and Support
Incidents of bias, hate crimes and microaggressions need to be reported allowing for appropriate investigation and response. https://studentaffairs.usc.edu/bias-assessment-response-support/

Student Support & Advocacy – (213) 821-4710
Assists students and families in resolving complex issues adversely affecting their success as a student EX: personal, financial, and academic. https://studentaffairs.usc.edu/ssa/

Diversity at USC – https://diversity.usc.edu/
Tabs for Events, Programs and Training, Task Force (including representatives for each school), Chronology, Participate, Resources for Students

Resources for Online Students
The Course Blackboard page and the GIST Community Blackboard page have many resources available for distance students enrolled in our graduate programs. In addition, all registered students can access electronic library resources through the link https://libraries.usc.edu/. Also, the USC Libraries have many important resources available for distance students through the link: https://libraries.usc.edu/faculty-students/distance-learners. This includes instructional videos, remote access to university resources, and other key contact information for distance students.