<table>
<thead>
<tr>
<th></th>
<th>Tuesday</th>
<th>6:40 p.m. to 9:20 p.m.</th>
<th>OHE 122</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab</td>
<td>Friday</td>
<td>5:30 p.m. to 6:20 p.m.</td>
<td>OHE 122</td>
</tr>
</tbody>
</table>

Professor
L. Carter Wellford

Office
KAP 238B

Office Hours
M, TH 11:00 AM - 12:00 PM

Phone
(310) 968-1224 cell

Email
wellford@usc.edu

Teaching Assistant I
To be announced

Office
To be announced

Office Hours
To be announced

Teaching Assistant II
To be announced

Office
To be announced

Office Hours
To be announced

Teaching Assistant III
To be announced

Office
To be announced

Office Hours
To be announced

Prerequisites
Graduate Standing

Textbook
Cook, et. al., "Concepts and Applications of Finite Element Analysis", Wiley

Course Reader
Wellford, L.C., “CE 529a Class Notes” (available as a “Class Reader” in USC Bookstore)

Course Description
Typical engineering problems discussed on a physical basis. Setup and solution of problems by means of the existing mathematical tools

Course Objectives
See description below

Learning Objectives
See description below

Policies on Late work
No late homework will be accepted
Make-up work	
Incomplete work	
Extra credit	

Final grade schema is based on the following percentages of graded coursework:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>25%</td>
<td>Homework assigned weekly, problems are due on the following week</td>
</tr>
<tr>
<td>Lab Homework</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Midterm</td>
<td>25%</td>
<td>10/9/2018</td>
</tr>
<tr>
<td>Final Project</td>
<td>20%</td>
<td>Due 12/11/2018</td>
</tr>
<tr>
<td>Final Exam</td>
<td>25%</td>
<td>12/11/2018 — 7-9pm</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Class Calendar (topic dates are subject to change)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Main Lecture Topics</th>
<th>Exams</th>
<th>Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/21</td>
<td>Variational Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8/28</td>
<td>Calculus of Variations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9/4</td>
<td>Constraints – Lagrange's multiplier, Penalty – Galerkin Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9/11</td>
<td>Continuum Elements I, Isoparametric Ele., Numerical Integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9/18</td>
<td>Elasticity Problems, Numerical Implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9/25</td>
<td>Stress Calculation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10/2</td>
<td>Continuum Elements II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10/9</td>
<td></td>
<td>Midterm</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10/16</td>
<td>Axisymmetric Problems,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10/23</td>
<td>Incompressible and Constrained Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10/30</td>
<td>Plate Theory; Plate Elements; Kirchhoff and Mindlin Elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11/6</td>
<td>Shell Theory, Analysis of Shells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11/13</td>
<td>Structural Dynamics, Time History Analysis, Free Vibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11/20</td>
<td>Nonlinear Structural Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11/27</td>
<td>Adaptive Methods, Elastic Stability, Buckling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/11</td>
<td>Final Exam</td>
<td>Final Exam</td>
<td>Project</td>
</tr>
</tbody>
</table>

Variational Models
- Calculus of variations
- Constraints – Lagrange multiplier
- Constraints – penalty
- Galerkin method
CE 529a Finite Element Analysis (3)
2018 Fall Semester — Course Syllabus

Continuum Finite Elements
1-D interpolation methods
2-D interpolation methods – rectangles and triangles
3-D interpolation methods – hexahedron, tetrahedron, prism

Isoparametric Elements
Mappings – physical system and natural coordinate system
Numerical integration – Gauss quadrature

Numerical Implementation of the Finite Element Method
Column storage schemes
Assembly in active column form
Static column solvers
Mesh generation

Finite Elements for Elasticity Problems
Plane stress – plane strain
Stress calculation
Incompressible problems
Pressure, enforced displacement, and thermal loadings

Finite Elements for Axi-symmetric Elasticity Problems
Finite Elements for Plate Problems
Finite Elements for Shell Problems
Finite Elements for Dynamic Problems

STATEMENT ON ACADEMIC INTEGRITY
USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one’s own academic work from misuse by others as well as to avoid using another’s work as one’s own.

All students are expected to understand and abide by these principles. SCampus, the Student Guidebook, contains the Student Conduct Code in Section 11.00, while the recommended sanctions are located in Appendix A: http://www.usc.edu/dept/publications/SCAMPUS/gov/. Students will be referred to the Office of Student Judicial Affairs and Community Standards for further review, should there be any suspicion of academic dishonesty. The Review process can be found at: http://www.usc.edu/student-affairs/SJACS/.

STATEMENT FOR STUDENTS WITH DISABILITIES
Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (or to TA) as early in the semester as possible.

DSP Contact Information

Office location: STU 301
Hours open: 8:30 a.m. until 5:00 p.m. — Monday through Friday.
Phone number: (213) 740-0776