CE 526 Engineering Mathematical Methods 29741R (3 units)

2018Fall Semester — Course Syllabus

Professor	Vincent Lee, vlee@usc.edu and Athanassios Fokas. Fokas@usc.edu		
Office	KAP 230B and OHE		
Phone	(213) 740-0568		
Blackboard	Register at 1) https://courses.uscden.net and 2) https://piazza.com		
Office Hours	MW9-10am, MW 2:50-3:20pm		
Teaching Assistant			
Email			
Office Hours			

COURSE DESCRIPTION

Engineering Mathematical Methods for solutions of problems encountered in civil, mechanical and aerospace engineering

COURSE OBJECTIVES

Engineering problems discussed on a physical basis with solutions via mathematical tools: Fourier series; Fourier and Laplace transforms; partial differential equations, wave and Laplace equations. Duplicates credit in CE 525b. **Recommended preparation:** undergraduate multivariable calculus and ordinary differential equations.

LEARNING OBJECTIVES

After reviewing what we learned in our undergraduate Math/Calculus courses, we learn Fourier series, eigenvalues & functions, systems of ODE. Then we spent almost 2 months on PDE, when we solve the wave, heat and Laplace equations in both rectangular and polar coordinates. We then discuss transform methods in the last month.

Prerequisite	none			
Days, Time, Location	Monday		3:30 - 6:10 p.m.	RTH105
Required Textbook	E. Kreyszig Advanced Engineering Mathematics 10 th ed. ISBN-13: 978-0470458365			
Required Course	Master of Science in Civil Engineering - Structural & other options see CEE catalogue			
Grading Schema	Homework	10	%	
	All Exams	90	%	

Total	100	%
-------	-----	---

CE 526 Engineering Mathematical Methods —Class Schedule

DA	TE	Lecture		Homework
Week	WED	No.	Topics	Posted on Blackboard Due Wed Next
1 8/20		1	L00 - Review - PreQuiz	
		2	LOOA - PreQuiz Solutions	
2	8/27	3	L01 - Fourier Series,	
_	0, 2,	4	Orthogonal Series Expansions	HW#1: LO1
3	09/10	5	LO 2- Eigenvalues, Eigenvectors & Eigenfunctions	
	3 03710	6	20 2 Eigenvaluos, Eigenvestere et Eigenmaneaene	HW#2: LO2
4	4 00 (17	7	LO3 - System of ordinary Differential Equations	
4	09/17	8	Applications	HW#3: LO3
5 09/24		9	LO4 - Partial Differential Equations (PDE)	
	10		Method of Separation of Variables	HW#4: LO4
6	6 10/01 11		LO5.1-3 - One Dimensional (1D) Wave Equation,	
4:55-6	4:55-6:10pm Mon		MIDTERM #1: Lectures 01-04	HW#5: L5.1-3
7	10/8	12	LO5.4-5 - One Dimensional (1D) Beam Equation	
,	107 0	13	LO6.1,3 - (2D) Wave Equation	HW#6: L05,06
8	10/15	14	LO6.2 - Non-homogeneous PDE	
	10713	15	LO7.1-4 - 1D Heat Equation	HW#7; L06,07
9	10/22	16	LO7.5 - 2D Heat Equation	
	10722	17	LO7.6 - Non-homogeneous Heat Equation	HW#8: L07
10	10/29	18	L08.1,2 - 2D Laplace Equation in Rectangular Coord	
10		19	L08.3 2D Laplace Equation in Cylind. (Polar) Coord	HW#9: L08
11	11/5	20	L09.1 - 2D Wave Equation in Cylindrical Coordinates	
4:55-6	5:10pm	Mon	MIDTERM #2: Lectures 05-09	HW#10: L09
12	11/12	21	L09.2- 2D Wave Equation (cont.): Symmetric case	
	11/12	22	L10 -Sturm-Liouville Problem-	HW#11 L10
13	11/19	23	L11 - Fourier Transform	

CE 526 Engineering Mathematical Methods —Class Schedule

DATE Lecture		Lecture		Homework	
Week	WED	No.	Topics	Posted on Blackboard Due Wed Next	
		24	L11 - Fourier Transform, cont. or L12 Laplace Transform	HW#12,13:L11,12	
	11/21		USC Holiday on Wed before Thanksgiving		
	11/23 - 11/25Wed-Fri Thanksgiving (USC Holidays)				
	25		L12 Laplace Transform (cont.)		
14	11/28		Review of FINAL MIDTERM (No. 3): Lectures 07-12		
12	12/10 Mon Final 2-4pm (to be revised)				
	Christmas Holidays				

STATEMENT ON ACADEMIC INTEGRITY

USC seeks to maintain an optimal learning environment. General principles of academic

honesty include the concept of respect for the intellectual property of others, the

expectation that individual work will be submitted unless otherwise allowed by an instructor,

and the obligations both to protect one's own academic work from misuse by others as

well as to avoid using another's work as one's own.

All students are expected to understand and abide by these principles. SCampus, the

Student Guidebook, contains the Student Conduct Code in Section 11.00, while the

recommended sanctions are located in Appendix A:

http://www.usc.edu/dept/publications/SCAMPUS/gov/. Students will be referred

to the Office of Student Judicial Affairs and Community Standards for further review,

should there be any suspicion of academic dishonesty.

The Review process can be found at: http://www.usc.edu/student-

affairs/SJACS/.

STATEMENT FOR STUDENTS WITH DISABILITIES

Any student requesting academic accommodations based on a disability is required to

register with Disability Services and Programs (DSP) each semester. A letter of verification

for approved accommodations can be obtained from DSP. Please be sure the letter is

delivered to me (or to TA) as early in the semester as possible.

DSP Contact Information

Office Location: STU 301

Open: 8:30 a.m. until 5:00 p.m., Monday through Friday.

• Phone number: (213) 740-0776