AME 526: Engineering Analytical Methods
Fall 2018

Instructor: Prof. Niema M. Pahlevan

Office: 470 Michelson Bldg.
Email: pahlevan@usc.edu (Only non-scientific questions or yes-or-no questions will be answered by e-mail)
Office hours: M 3:30-5:30; or by appointment.
Office phone: 213-740-7182
Lecture hours: MW 2:00-3:20, OHE 132
Midterm exam: October 10th - In class
Final exam: Friday, December 7, 2-4 p.m.
TAs: Ruiyang Wang, ruiyangw@usc.edu
TA Office Hours: Tue. 10am-12pm, Wed. 9-10am, Fri. 10-11am, at VHE 202

The course will cover elementary applied mathematical methods for solving linear partial differential equations that arise in engineering. This course has two major goals: (1) enhance student’s ability to perform more complex mathematical analyses of engineering problems; (2) improve students’ understanding of how mathematical applications are defined, derived and related. There are 11 parts to the course:

- Review and introductory concepts
- Sturm-Liouville theory
- Method of separation of variables
- Diffusion equation
- Laplace's equation
- Linear wave equation
- Laplace transform method
- Fourier methods
- Introduction to Green's functions
- Method of characteristics
- Special topics

Textbook:

Other recommended books:
Grading: Homework 20+5%; Midterm 40%; Final 40% (Total: %100+%5 bonus)
Curved grading will be applied.
No late homework will be accepted.
Your lowest HW grade will be dropped.

Important policies (please adhere):

- Final grade will depend entirely on the performance on the above components, and be independent of the financial support requirements (e.g., minimum grade requirement for tuition reimbursement).
- Please schedule your work-related travel during time periods outside of the mid-term and final exams. Accommodation to take exams on different dates will be made for only family emergencies and documented illness or health-related emergencies. Other exceptions will be considered on a case-by-case basis.