

# EE503: Probability for Electrical and Computer Engineers (Spring 2018)

Units: 4

Instructor: Mohammad Reza Rajati, PhD

PHE 414

rajati@usc.edu – Include 503 in subject

Office Hours: Monday 1:00 -3:00

TA(s): Ethan Sung

yuchens@usc.edu - Include EE 503 in subject

Office Hours: Thursday 3:00-5:00 PM

Office Location: TBD

Md Nasir

mdnasir@usc.edu – Include EE 503 in subject

Office Hours: TBD
Office Location: TBD

Grader(s): Chengyu Ke

chengyuk@usc.edu – Include EE 503 in subject

Llingzhi Lin

llingzhl@usc.edu - Include EE 503 in subject

Shixiang Zhu

shixianz@usc.edu - Include EE 503 in subject

Lecture(s): Monday, Wednesday, 8 - 9:50 am in ZHS 352 (Section 30677)

Monday, Wednesday, 10 - 11:50 am in OHE 122 (Section 30755)

**Discussion(s):** Friday, 8:00-8:50 am in OHE 132

Friday, 9:00-9:50 am in ZHS 352

Webpages: Piazza Class Page for everything except grades

and USC DEN Class Page for grades and homework submission – All HWs, handouts, solutions will be posted in PDF format

- Student has the responsibility to stay current with webpage material

**Prerequisites:** Prior courses in multivariate calculus, linear algebra, and linear system theory.

- This course is a prerequisite or corequisite to many courses including EE 511, 5

-535, 555, 556, 559, 562, 563, 564, 565, 583, 649, and 660.

Other Requirements: Basic computer skills (e.g., plotting, Matlab, Excel, Python, etc.).

**Tentative Grading:** Assignments 15%

Three Midterm Exams 45%

Final Exam 40%

Participation on Piazza\* 5%

#### Letter Grade Distribution:

| $\geq 93.00$  | A  | 73.00 - 76.99 | $\mathbf{C}$ |
|---------------|----|---------------|--------------|
| 90.00 - 92.99 | A- | 70.00 - 72.99 | C-           |
| 87.00 - 89.99 |    | 67.00 - 69.99 | D+           |
| 83.00 - 86.99 | В  | 63.00 - 66.99 | D            |
| 80.00 - 82.99 | В- | 60.00 - 62.99 | D-           |
| 77.00 - 79.99 | C+ | $\leq 59.99$  | $\mathbf{F}$ |

**Disclaimer:** Although the instructor does not expect this syllabus to drastically change, he reserves every right to change this syllabus any time in the semester.

Note on e-mail vs. Piazza: If you have a question about the material or logistics of the class and wish to ask it electronically, please post it on the piazza page (not e-mail). You may post it anonymously if you wish. Often times, if one student has a question/comment, other also have a similar question/comment. Use e-mail with the professor, TA, graders only for issues that are specific to your individually (e.g., a scheduling issue or grade issue).

Catalogue Description: Rigorous coverage of probability, discrete and continuous random variables, functions of multiple random variables, covariance, correlation, random sequences, Markov chains, estimation, and introduction to statistics.

Course Objectives: Upon successful completion of this course a student will

- Understand the rigorous mathematical foundations of probability and random variables, due to exposure to introductory measure-theoretic concepts
- Develope probabilistic reasoning skills to deal with probabilistic uncertainty
- Precisely formulate real-world engineering problems via the framework of probability
- Obtain adequate mathematical maturity to be prepared for future courses including those in controls, signal processing, communications, statistics, data analysis, bioinformatics, and machine learning

## **Exam Dates:**

- Midterm Exam 1: Friday, February 9, 8:00 9:50 AM
- Midterm Exam 2: Friday, March 9, 8:00 9:50 AM
- Midterm Exam 3: Friday, April 6, 8:00 9:50 AM
- Final Exam: Monday, May 7, 8:00 10 AM as set by the university

#### Textbooks:

- Required Textbooks:
  - Probability and Random Processes for Electrical and Computer Engineers, 1<sup>st</sup> Edition
     Author: John A. Gubner; Cambridge University Press, 2006. ISBN-13: 978-0511220234

2. Probability and Random Processes, 3<sup>rd</sup> Edition

**Authors:** Geoffery R. Grimmet and David R. Stirzaker; Oxford University Press; 2001. **ISBN-13:** 978-0198572220

#### • Recommended Textbooks:

1. Introduction to Probability, 2<sup>nd</sup> Edition

Authors: Dimitri P. Bertsekas and John N. Tsitsiklis; Athena Scientific, 2008. ISBN-13: 978-1886529236

2. Introduction to Probability Models, 11<sup>th</sup> Edition

Authors: Sheldon M. Ross, Academic Press, 2010. ISBN-13: 978-0124079489

3. One Thousand Exercises in Probability, 1st Edition

Authors: Geoffery R. Grimmet and David R. Stirzaker; Oxford University Press; 2001. ISBN-13: 978-0198572213

- 4. Schaum's Outline of Probability, Random Variables, and Random Processes, 3<sup>rd</sup> Edition Author: Hwei P. Hsu; McGraw-Hill Education; 2014. ISBN-13: 978-0071368100
- 5. Schaum's Outline of Probability and Statistics, 4th Edition

Authors: John J. Schiller Jr., R. Alu Srinivasan, Murray R Spiegel; McGraw-Hill Education; 2012. ISBN-13: 978-0071795579

### **Grading Policies:**

- The letter grade distribution table guarantees the *minimum* grade each student will receive based on their final score. When appropriate, relative performance measures will be used to assign the final grade, at the discretion of the instructor.
  - Final grades are non-negotiable and are assigned at the discretion of the instructor. If you cannot accept this condition, you should not enroll in this course.
  - Three of your lowest homework grades will be dropped from the final grade.
  - The lowest score of your midterms will be dropped from the final grade.
  - \*Participation on Piazza has up to 5% extra credit, which is granted on a competetive basis at the discretion of the instructor.

#### • Homework Policy

- Homework is assigned on a weekly basis. Absolutely no late homework will be accepted.
   A late assignment results in a zero grade.
- Homework solutions should be typed or scanned using scanners or mobile scanner applications like CamScanner and uploaded on blackboard (photos taken by cell-phone cameras and in formats other than pdf will NOT be accepted). Programs and simulation results have to be uploaded on blackboard as well.
- Students are encouraged to discuss homework problems with one another, but each student must do their own work and submit individual solutions written/ coded in their own hand. Copying the solutions or submitting identical homework sets is written evidence of cheating. The penalty ranges from F on the homework or exam, to an F in the course, to recommended expulsion.

Posting the homework assignments and their solutions to online forums or sharing them
with other students is strictly prohibited and infringes the copyright of the instructor.
Instances will be reported to USC officials as academic dishonesty for disciplinary action.

# • Exam Policy

- Make-up Exams: No make-up exams will be given. If you cannot make the above dates due to a class schedule conflict or personal matter, you must drop the class. In the case of a required business trip or a medical emergency, a signed letter from your manager or physician has to be submitted. This letter must include the contact of your physician or manager.
- Midterms and final exams will be closed book and notes. No calculators are allowed nor are computers and cell-phones or any devices that have internet capability. One letter size cheat sheet (back and front) is allowed for the midterms. Two letter size cheat sheets (back and front) are allowed for the final.
- All exams are cumulative, with an emphasis on material presented since the last exam.

#### • Attendance:

Students are required to attend all the lectures and discussion sessions and actively participate in class discussions. Use of cellphones and laptops is prohibited in the classroom.
 If you need your electronic devices to take notes, you should discuss with the instructor at the beginning of the semester.

# Important Notes:

- Textbooks are secondary to the lecture notes and homework assignments.
- Handouts and course material will be distributed.
- Please use your USC email to register on Piazza and to contact the instructor and TAs.

# Tentative Course Outline

| Monday                              | Wednesday                            |   |
|-------------------------------------|--------------------------------------|---|
| Jan 8th 1                           | 10th                                 | 2 |
| Introduction                        | Set Theory                           |   |
| Logic                               |                                      |   |
| 15th                                | 17th                                 | 3 |
| Martin Luther King Day              | Set Theory,                          |   |
|                                     | Probability Models  • Sample Space,  |   |
|                                     |                                      |   |
|                                     | • $\sigma$ -algebra of events        |   |
|                                     | • Probability as An Additive Measure |   |
|                                     | • Continuity of Probability          |   |
|                                     | Conditional Probability              |   |
| 22nd 4                              | 24th                                 | 5 |
| Probability Models and Independence | Probability Models                   |   |
| • Total Probability                 | • The Borel-Cantelli Lemmas          |   |
| • The Baye's Rule                   | Random Variables                     |   |
| • The Multiplication Rule           | • Definitions                        |   |
| 29th 6                              | 31st                                 | 7 |
| Random Variables                    | Random Variables                     |   |
| • Definitions                       | • CDFs                               |   |
| • CDFs                              | Independence                         |   |
| • Borel Sets                        | Multiple Random Variables            |   |
|                                     | Combinatorics                        |   |

| Monday                                                           | Wednesday                                        |
|------------------------------------------------------------------|--------------------------------------------------|
| Feb 5th 8                                                        | 7th <b>9</b>                                     |
| Combinatorics                                                    | Discrete Random Variables                        |
| Discrete Random Variables PMFs                                   | • Famous Discrete Random Variables               |
| Famous Discrete Random Variables                                 | • Multiple Random Variables                      |
|                                                                  | • Joint PMFs                                     |
|                                                                  | • Marginal PMFs                                  |
|                                                                  | • Conditional PMFs                               |
|                                                                  | • Total Probability                              |
|                                                                  | • Substitution Law                               |
|                                                                  | • Independence                                   |
| 12th <b>10</b>                                                   | 14th 11                                          |
| Discrete Random Variables                                        | Moments of Discrete Random Variables             |
| • Derived Distributions                                          | Variance and Standard Deviation                  |
| Moments of Discrete Random Variables                             | • Moments of Famous Discrete Random<br>Variables |
| <ul><li>Expectation</li><li>The Law of The Unconscious</li></ul> | • Factorial Moments                              |
| Statistician                                                     | • Existence of Expectations                      |
| • Properties of Expectation                                      | • Covariance and Correlation and Their           |
| • Higher Order Moments                                           | Properties                                       |
|                                                                  | • Expectation As Norm and Inner Product          |
|                                                                  | • The Cauchy-Schwartz-Bunyakovsky<br>Lemma       |

| Monday                                                           | Wednesday                                                             |
|------------------------------------------------------------------|-----------------------------------------------------------------------|
| 19th                                                             | 21st <b>12</b>                                                        |
| President's Day                                                  | Moments of Discrete Random Variables  • Expectation As Norm and Inner |
|                                                                  | Product  • The Cauchy-Schwartz-Bunyakovsky                            |
|                                                                  | Lemma Conditional Expectation                                         |
|                                                                  | • The Law of The Unconscious<br>Statistician                          |
|                                                                  | • Substitution Law for Conditional Expectation                        |
|                                                                  | Total Expectation                                                     |
| 26th <b>13</b>                                                   | 28th <b>14</b>                                                        |
| Conditional Expectation                                          | Continuous Random Variables                                           |
| • Conditional Expectation as A Random<br>Variable                | • PDFs                                                                |
| • Properties of Conditional Expectation                          | • Important Continuous Random<br>Variables                            |
| • Existence of Conditional Expectation                           |                                                                       |
| • Conditional Probability as Conditional Expectation             |                                                                       |
| • Wald's Equality                                                |                                                                       |
| • Higher Order Conditional Moments                               |                                                                       |
| • Projections, Projection Theorem,<br>Principle of Orthogonality |                                                                       |
| • Conditional Expectation as an Estimator                        |                                                                       |

| Monday                                                                                                                                                                                                                                                                         | Wednesday                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mar 5th 15                                                                                                                                                                                                                                                                     | 7th <b>16</b>                                                                                                                                                                   |
| Continuous Random Variables                                                                                                                                                                                                                                                    | Continuous Random Variables                                                                                                                                                     |
| <ul> <li>Important Continuous Random<br/>Variables</li> <li>Multiple Random Variables and Joint<br/>PDFs</li> <li>Marginal PDFs</li> <li>Independence</li> <li>Conditional Probability and Conditional<br/>PDFs</li> <li>Moments of Continuous Random<br/>Variables</li> </ul> | <ul> <li>Existence and Properties of Moments</li> <li>Moments of Famous Continuous<br/>Random Variables</li> <li>The Law of The Unconscious<br/>Statistician (LOTUS)</li> </ul> |
| 12th                                                                                                                                                                                                                                                                           | 14th                                                                                                                                                                            |
| Spring Break                                                                                                                                                                                                                                                                   | Spring Break                                                                                                                                                                    |
| 19th 17                                                                                                                                                                                                                                                                        | 21st 18                                                                                                                                                                         |
| Continuous Random Variables                                                                                                                                                                                                                                                    | Mixed Random Variables                                                                                                                                                          |
| • The Law of Total Probability                                                                                                                                                                                                                                                 | • Mixed Joint CDFs and PDFs                                                                                                                                                     |
| • The Substitution Law                                                                                                                                                                                                                                                         | • Mixed Versions of Total Probability and<br>Baye's Rule                                                                                                                        |
| • Total Probability                                                                                                                                                                                                                                                            |                                                                                                                                                                                 |
| • Total Expectation                                                                                                                                                                                                                                                            | Types of Random Variables The Bivariate Normal Distribution                                                                                                                     |
| • Total Probability and Expectation for<br>Multiple Random Variables                                                                                                                                                                                                           |                                                                                                                                                                                 |
| • Conditional Expectation Mixed Random Variables                                                                                                                                                                                                                               |                                                                                                                                                                                 |

| Monday                                          | Wednesday                                           |
|-------------------------------------------------|-----------------------------------------------------|
| 26th 19                                         | 28th <b>20</b>                                      |
| Random Vectors                                  | Derived Distributions                               |
| • Expectation of A Random Vector                | Non-Monotonic Functions                             |
| • Linearity of Expectation                      | Multivariable Functions                             |
| • Auto-correlation Matrix                       | • Linear Mappings                                   |
| • Covariance Matrix                             | • A Single Function of Multiple Random<br>Variables |
| • Positive Definiteness                         |                                                     |
| • Cross-correlation Matrix                      | Order Statistics                                    |
| • Cross-covariance Matrix                       |                                                     |
| • The Multivariate Normal Distribution          |                                                     |
| Derived Distributions                           |                                                     |
| Monotonic Functions                             |                                                     |
| • Linear Functions                              |                                                     |
| Apr 2nd 21                                      | 4th <b>22</b>                                       |
| Derived Distributions                           | Generating Functions                                |
| Order Statistics                                | Moment Generating Functions                         |
| • Sum of Independent Random Variables           | • Region of Convergence                             |
| Noraml Random Variables in Polar<br>Cooridnates | • Inversion of MGFs                                 |
| Coorignates                                     | • Properties of MGFs                                |
| • The Rayleigh Distribution                     |                                                     |
| • Simulation of Random Variables                |                                                     |
| • The Box-Muller Method                         |                                                     |
|                                                 |                                                     |

| Monday                                                                                                                                                                                                                                                                                                                |    | Wednesday                                                                                                                                                                                                                            |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 9th                                                                                                                                                                                                                                                                                                                   | 23 | 11th ::                                                                                                                                                                                                                              | 24 |
| Generating Functions                                                                                                                                                                                                                                                                                                  |    | Concentration Inequalities                                                                                                                                                                                                           |    |
| <ul> <li>Probability Generating Functions</li> <li>Region of Convergence</li> <li>Properties of PGFs</li> <li>Random Sums of Random Variables</li> <li>Laplace and Z transforms</li> <li>Characteristic Functions</li> <li>Generating Functions for Random Vectors</li> <li>Joint Characteristic Functions</li> </ul> |    | <ul> <li>Markov, Chebychev, and Chernoff<br/>Inequalities</li> <li>Jensen, Holder, and Lyapunov<br/>Inequalities</li> <li>Stochastic Convergence</li> <li>Modes of Convergence</li> <li>Hierarchy of Modes of Convergence</li> </ul> |    |
| 16th                                                                                                                                                                                                                                                                                                                  | 25 | 18th                                                                                                                                                                                                                                 | 26 |
| Stochastic Convergence                                                                                                                                                                                                                                                                                                |    | Statistics                                                                                                                                                                                                                           |    |
| <ul> <li>Hierarchy of Modes of Convergence</li> <li>Examples and Counter-examples</li> <li>Limit Theorems</li> <li>Weak Law of Large Numbers</li> <li>Strong Law of Large Numbers</li> <li>The Central Limit Theorem</li> <li>Berry-Esseen Theorem</li> </ul>                                                         |    | <ul> <li>Point and Interval Estimation of The Mean</li> <li>One-Sided and Two-Sided Confidence Intervals</li> <li>Interpretation of Confidence Intervals</li> <li>Estimation of Variance</li> <li>Student's T-Statistic</li> </ul>   |    |

| Monday                                           | Wednesday                                |
|--------------------------------------------------|------------------------------------------|
| 23rd <b>27</b>                                   | 25th <b>28</b>                           |
| Statistics                                       | Markov Chains*                           |
| • Point and Interval Estimation of<br>Proportion | The Markovian Property                   |
| -                                                | Markov Chains                            |
| • Frequentist (Fisherian) Hypothesis Testing     | • Random Walks                           |
| • Parameter Estimation                           | • Homogeneous Chains                     |
| • Properties of Estimators                       | • Transition Matrix                      |
| • Method of Moments                              | • Transition Graph                       |
| • Maximum Likelihood Estimation                  | • The Chapman-Kolmogorov Equation        |
| • The Cramér-Rao Bound                           | • Steady State Behavior of Markov Chains |
| • Maximum A-Posteriori Estimate                  | • Categories of States in Markov Chains  |
| • Minimum Mean-Squared Error Estimate            | • Ergodic Markov Chains                  |
|                                                  |                                          |

<sup>\*</sup>If time permits.

#### Notes:

• Items marked by \* will be covered only if time permits.

Statement on Academic Integrity: USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one's own academic work from misuse by others as well as to avoid using another's work as one's own. All students are expected to understand and abide by these principles. SCampus, the Student Guidebook, contains the University Student Conduct Code (see University Governance, Section 11.00), while the recommended sanctions are located in Appendix A. See: http://scampus.usc.edu.

Emergency Preparedness/Course Continuity in a Crisis In case of a declared emergency if travel to campus is not feasible, USC executive leadership will announce an electronic way for instructors to teach students in their residence halls or homes using a combination of Blackboard, teleconferencing, and other technologies. See the university's site on Campus Safety and Emergency Preparedness: <a href="http://preparedness.usc.edu">http://preparedness.usc.edu</a>

Statement for Students with Disabilities: Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (or to TA) as early in the semester as possible. DSP is located in STU 301 and is open 8:30 a.m.5:00 p.m., Monday through Friday. Website: http://sait.usc.edu/academicsupport/centerprograms/dsp/home\_index.html

(213) 740-0776 (Phone), (213) 740-6948 (TDD only), (213) 740-8216 (FAX) ability@usc.edu.