AME 514

Applications of Combustion Spring 2018, OHE 100B, W 11:00 am - 1:40 pm

Instructor: Fokion N. Egolfopoulos

> Office: OHE 400B Tel: 740-0480

E-mail: egolfopo@usc.edu Office Hours: Anytime by appointment

Teaching Assistant: TBD

Office Hours: Anytime by appointment

References:

- 1. Combustion Physics, by C.K. Law, 1st Edition, Cambridge University Press, 2006, (required).
- 2. Unpublished notes updated yearly, by C.K. Law & F.N. Egolfopoulos (will be provided as needed).
- Combustion Theory, by Forman A Williams, 2nd Edition, Addison-Wesley, 1985.
 Combustion, Flames, and Explosions of Gases, by Bernard Lewis and Guenther von Elbe, 3rd Edition, Academic Press, 1987.
- Combustion, by Irvin Glassman, 3rd Edition, Academic Press, 1996.
 An Introduction to Combustion to Turbulent Reacting Flows, by R.S. Cant and E. Mastorakos, Imperial College Press, 2008.
- 7. Theoretical and Numerical Combustion, by T. Poinsot and D. Veynante, R.T. Edwards, Inc., 2005.

Prerequisite: AME 513 (Principles of Combustion) or equivalent

Topics:

Review of Principles of Combustion

Aerodynamics of Laminar Flames

Ignition and Extinction Phenomena

Turbulent Reacting Flows

Combustion in Boundary Layer Flows

Combustion in Supersonic Flows

Combustion at Extreme Thermodynamic Conditions

Introduction to Modeling of Reacting Flows

Grading:	Midterm Exam	March 21 (W)	(11:00 am-12:30 pm)	35%
	Final Exam	May 2 (W)	(11:00 am-1:00 pm)	35%
	Homework Assignments			30%

Note: The use of laptops or cell phones to access the internet/e-mail during class and/or exams is not allowed. Such devices are allowed only to access material pertaining to the class.