MASC 551

Mechanical Behavior of Engineering Materials

Fall Term 2017

Lectures:	OHE 122 T-Th 9:	30-10:50
Lectures:	Professor: M.E. Kassner <u>Kassner@usc.edu</u>	
	Office: Office Hours:	RTH 503 (AH) RTH 502 T-Th 1-2 PM (Prefer Appt.)
ТА	Roya Ermagan <u>ermagan@usc.edu</u>	

Supplemental Texts:

"Mechanical Metallurgy", G.E. Dieter
"Mechanical Behavior of Materials", T.H. Courtney
"Deformation and Fracture of Engineering Materials", R.W. Herzberg
"Mechanical Behavior of Materials", McClintock and Argon
"Fracture of Structural Materials", Tetelman and McEvily
"Mechanical Behavior of Material"s Meyers and Chawla, Prentice Hall, 1998
"Introduction to Dislocations" D. Hull and D.J. Bacon 5th ed. Butterworth

Introductory Books:

"Materials Science and Engineering" 5th ed. William D. Callister "Principles of Engineering Materials", Barrett, Nix and Tetelman **Objectives:**

This course focuses on the mechanical properties of materials. The lectures will emphasize stress and strain relationships how the macroscopic mechanical behavior is related to the structure and microstructure of the material. This course will discuss elementary dislocation theory and relate this to basic strengthening mechanisms. Physical and chemical mechanisms that alter the mechanical properties will be discussed. Crystalline metals and ceramics will be emphasized but polymers and non-crystalline materials will be discussed as well. Fatigue and fracture will also be discussed in terms of fundamental mechanisms.

Grading:

Mid-terms (3)	60%
Final Exam	40%

MASC 551 MECHANICAL PROPERTIES OF ENGINEERING MATERIALS

<u>WEEK</u>	<u>DATE</u>	LECTURE TOPICS
1	8/22 8/24	Introduction Elasticity I
2	8/29 8/31	Elasticity II Elasticity III
3	9/5 9/7	Basic Plasticity True Stress and Strain
4	9/12 9/14	Work Hardening Midterm #1
5	9/19 9/21	Dislocations Intro. Dislocations: Schmid's Law
6	9/26 9/28	Dislocations: Theoret. Shear Strength Dislocations: Burgers Vector
7	10/3 10/5	Dislocations: Stress fields Dislocation: Dynamics

8	10/10 10/12	Partial Dislocations Dislocation Cross-slip, climb
9	10/17 10/19	Kinks, Jogs Midterm #2
10	10/24 11/26	Grain Size Strengthening Strengthening by Solutes
11	10/31 11/2	Strengthening by Precipitates Annealing
12	11/7 11/9	Heat Treatment of Steels I Heat Treatment of Steels I I
13	11/14 11/16	Brittle Fracture Ductile Fracture
14	11/21 11/23	Midterm #3 HOLIDAY
15	11/28 11/30	Fatigue Strain- Rate Sensitivity/Creep
16	12/7	(11-1) FINAL EXAM