USC Viterbi School of Engineering

EE593, Robust Multivariable Control

Units: 03

Term: Fall 2017; Day: Tu, Th; Time: 5:00-6:20 pm

Location: DEN, OHE120

Instructor: E. Jonckheere

Office: EEB306
Office Hours: TBA

Contact Info: jonckhee@usc.edu, (213) 740-4457

Teaching Assistant: Eugenio Grippo (tentative)

Office: EEB321
Office Hours: TBA

Contact Info: egrippo@usc.edu

IT Help: Group to contact for technological services, if applicable.

Hours of Service:

Contact Info: Email, phone number (office, cell), Skype, etc.

Course Description

Various robust multivariable control architectures (centralized, decentralized, networked). Sensitivity and complementary sensitivity matrices; uncertainty representation; singular values Bode plots. Multivariable Nyquist stability criterion, internal stability, parameterization of stabilizing controllers. Algebraic Riccati Equations. Modern Wiener-Hopf design. Bounded real lemma. Modern H-infinity design. As cutting edge applications, we will consider power grid and quantum communication control.

This is a course "beyond the basics," for on-campus students eager to get into the deeper conceptual foundations of control and for those students from industry in need of learning the modern control design methods.

Learning Objectives

Students will be able to design controllers for many-input, many-output sytems with guaranteed robustness against model uncertainty. In addition, students will become acquainted with the mathematical principles (e.g., complex function theory, Principle of Optimality) behind the practical design methods.

Prerequisite(s): EE482 (Linear Control Systems) and EE585 (Linear System Theory)

Course Notes

Grading Type: letter grade

The course is Web-Enhanced (Blackboard).

Copies of lecture slides and other class information will be posted on Blackboard.

Classroom utilization of **Matlab and Mathematica** will be used as multimedia/technology-enhanced learning strategies.

Technological Proficiency and Hardware/Software Required

Students will be assumed to be familiar with Matlab. However, this class also involves polynomial matrix manipulations for which Mathematica is best. Students will be asked to install Mathematica on their computer and a "crash course" in Mathematica will be given.

Required Readings and Supplementary Materials

Required textbook: Kemin Zhou and John C. Doyle, "Essentials of Robust Control." Prentice Hall, Upper Saddle River, NJ, 1998. ISBN 0-13-525833-2.

Additional recommended text: Sigurd Skogestad and Ian Postlethwaite, "Multivariable Feedback Control: Analysis and Design," 2nd Edition, Wiley, Nov. 2005, ISBN: 978-0-470-01167-6.

Additional (required) reading:

- [PAJ] Ian R. Petersen, Brian D.O. Anderson and Edmond A. Jonckheere, "A first principles solution to the nonsingular control problem," *International Journal on Robust and Nonlinear Control*, vol. 1, pp. 171-185, 1991.
- [SJVL] M. G. Safonov, E. A. Jonckheere, M. Verma, D. J. N. Limebeer, "Synthesis Of Positive Real Multivariable Feedback Systems," *International Journal of Control*, Vol. 45, Issue 3, pp. 817-842, 1987.
- [WJ] Bing-Fei Wu and Edmond A. Jonckheere, "A simplified approach to Bode's theorem for continuous-time and discrete-time systems", *IEEE Transactions on Automatic Control*, volume AC-37, number 11, pp. 1797-1802, November, 1992.

Description and Assessment of Assignments

Students will be assigned a homework every other week. Homework will consist in solving textbook problems and will include a "research-oriented" problem to stimulate and probe students' creativity. There will be one midterm and one final.

Grading Breakdown

Assignment	Points	% of Grade
participation		5%
homework		20%
midterm		35%
final		40%

TOTAL 0 1

Assignment Submission Policy

Homework to be submitted two weeks after assignment.

Additional Policies

Late assignments will be penalized (unless valid, e.g., medical, reason). Attendance of the lectures is expected.

Matlab and Mathematica will be used in the classroom.

Course Schedule: A Weekly Breakdown

	Topics/Daily Activities	Readings and Homework	Deliverable/ Due Dates
Week 1 Dates	Various architectures of control systems (classical, modern, centralized, decentralized, networked). Concepts of uncertainty and robustness. Power grid & Quantum communication.	Zhou-Doyle, Chapter 1	
Week 2 Dates	Review of linear system theory: controllability, observability, realization, interconnected systems	Zhou-Doyle, Chapters 2, 3	Homework #1 assigned
Week 3 Dates	Closed-loop stability; singular values, Bode singular value plots of sensitivity and complementary sensitivity functions; uncertainty modeling	Zhou-Doyle, Sections 2.6, 6.1-6.3, Chapter 8	
Week 4 Dates	Fundamental limitations on achievable feedback performance	Zhou-Doyle, Sections 6.4, 6.5	Homework #1 due, Homework#2 assigned.
Week 5 Dates	Frobenius norm elementary parametric design; notion of power spectral density; H-two versus H-infinity design	Handout provided by instructor; Zhou-Doyle, Chapter 4	
Week 6 Dates	Algebraic foundation of multivariable theory: the Smith form; notion of rational coprime factorization; Bezout identity; crash course in MATHEMATICA	Handout provided by instructor	Homework #2 due, Homework#3 assigned.
Week 7 Dates	The linear-quadratic regulator problem; algebraic Riccati equation	Zhou-Doyle, Chaper 13	
Week 8 Dates	State space rational coprime factorization	Zhou-Doyle, Section 5.4	Homework #3 due, No homework assigned because of midterm.
Week 9 Dates	Internal stability and parameterization of all stabilizing controllers	Zhou-Doyle, Chapters 5, 11	
Week 10 Dates	Q-parameter solution to H-2 and H-infinity problems.	Notes provided by instructor	Homework#4 assigned.

Week 11 Dates	Positive realness and the bounded real lemma; Circuit theory & space structure illustrations	Notes provided by instructor [SJVL]	
Week 12 Dates	Notion of positive real design; mechanical systems examples	Notes provided by instructor [SJVL]; Zhou-Doyle Example 4.2, Section 12.4	Homework #4 due, Homework#5 assigned.
Week 13 Dates	2 Riccati equation solution to H-infinity problems: the bounded real lemma approach	Notes provided by instructor [PAJ]; Zhou-Doyle, Chapter 14	
Week 14 Dates	2 Riccati equation solution to H-infinity problems: various loop shifting. Examples of applications (e.g., quantum control)	Zhou-Doyle, Chapter 14	Homework #5 due, Homework#6 assigned.
Week 15 Dates	Review; preparation for final.	N/A	Last homework # 6 due.
FINAL Th. Dec. 07, 4:30- 6:30 pm			Date: For the date and time of the final for this class, consult the USC Schedule of Classes at www.usc.edu/soc.

Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism – presenting someone else's ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in *SCampus* in Section 11, *Behavior Violating University Standards*https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions/. Other forms of academic dishonesty are equally unacceptable. See additional information in *SCampus* and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct/.

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the *Office of Equity and Diversity* http://equity.usc.edu/ or to the *Department of Public Safety* http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us. This is important for the safety whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. *The Center for Women and Men* http://www.usc.edu/student-affairs/cwm/ provides 24/7 confidential support, and the sexual assault resource center webpage sarc@usc.edu describes reporting options and other resources.

Support Systems

A number of USC's schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute http://dornsife.usc.edu/ali, which sponsors courses and workshops specifically for international graduate students. Disability The Office of Services and **Programs** http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.htmlprovides_certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency Information http://emergency.usc.edu/will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.