USC Viterbi

School of Engineering

Revised July 2016

CSCI 599: Automated Reasoning and Verification
Units: 4
Fall 2017 — Monday, Wednesday—2:00pm - 3:50pm

Location: KDC 236

Instructor: Chao Wang
Office: SAL 334
Office Hours: Tuesday 2:00pm — 3:30pm (tentative)

Contact Info:
Http: http://www-bcf.usc.edu/~wang626/
Email: wang626@usc.edu

http://www-bcf.usc.edu/~wang626/
mailto:wang626@usc.edu

Course Description

The goal of this course is to provide an introduction to foundational techniques of automated reasoning and verification. In
the past decade, tremendous progress has been made in developing these logic-based machine intelligence techniques and
applying them to rigorous verification of systems (hardware, software, and embedded systems). The course will cover
classic topics such as temporal logic and model checking, as well as efficient implementations of decision procedures such
as binary decision diagrams, satisfiability solvers, and satisfiability modulo theory (SMT) solvers. The course will also discuss
applications of these techniques in industrial settings.

The course is self-contained and does not require any prior knowledge in this domain. However, it assumes that students
are comfortable with the basic concepts in discrete mathematics and computer programming.

The course will be graded on the basis of six homework assignments, a midterm exam, and a final project.

Learning Objectives

Students will gain an understanding of the theories and foundational techniques of logic-based automated reasoning and
verification, and learn how to leverage related software tools in practical settings. Major learning objectives are:

Understand the theoretical foundation of automated reasoning,

Write properties and formal specifications in computational tree logic (CTL),
Write properties and formal specifications in linear-time temporal logic (LTL),
Verify CTL and LTL specifications using model checking,

Use abstract and refinement to scale up the verification,

Construct and use BDDs for symbolic model checking,

Write and use SAT and SMT solvers for bounded model checking,

Apply the aforementioned techniques to practical systems.

PNOUNAWNRE

Prerequisites

1. General proficiency in discrete mathematics
2. Good programming skills

Required Readings and Supplementary Materials
There are no textbooks. Detailed lecture notes will be provided by the instructor.

The following book serves as a supplementary reading material (optional):
1. Model Checking, by Clarke, Grumberg, and Peled, The MIT Press, 1999.

Description and Assessment of Assignments

The grades will be based on the completion of six homework assignments, a midterm exam, and a final research project. A
more detailed explanation of each category is provided below, followed by a table showing the breakdown for each of
these categories.

Homework

Homework includes a programming related assignment (HWO, which accounts for 10% of the grade) and five standard
assignments (HW1-5, each of which accounts for 5% of the grade). Homework assignments must be submitted
electronically. Please take care to upload the correct files, because they are the ones that will be graded.

Syllabus for CSCI 599, Page 2 of 5

Midterm exam

Midterm exam will be open-book and open-notes, but electronic devices will not be allowed. There will be no make-up
exams. If you have an important reason for missing the midterm, please make arrangements with the instructor in
advance. Otherwise, a missed exam receives a grade of 0.

Research paper presentation

Research paper presentation asks each student to choose a paper from a list of recently published papers suggested by
the instructor. The goal is to teach others about the topic, so everyone in the class will have a better understanding of the
most recent development in the field.

To get a good grade in paper presentation, you need to excel in the following aspects:
e Clarity in presentation (how well you understand the paper and handle questions, how smooth your talk is, etc.)
e Quality of the slides (your slides must to be informative and thorough, with technical depths, figures, etc.)

Final project
Final project is a research project that asks students to develop new formal verification techniques or identify innovative
uses of existing formal verification techniques. At the end of the project, each student must submit a project report.

Your grade on the final project depends on the following aspects:
e Novelty of the project design,
e Thoroughness in the execution, and
e Clarity in the project report.

Below are two sample final projects:

1. Project Summary — Formal Verification: In this project, students are required to find an interesting application,
formulate it into a formal verification problem, and solve it using techniques learned from this course. For
example, you may use any of the following verification tools, such as NuSMV (http://nusmv.fbk.eu/NuSMV/),
CBMC (http://www.cprover.org/cbmc/) or VIS (http://visi.colorado.edu/~vis/).\

2. Project Summary — Program Synthesis: Syntax Guided Synthesis (SyGus) is an emerging technique for directly
generating software code from a set of logical specifications. In this project, students are required to learn the
SyGusS specification language and the basics of SyGusS tools. You need to identify an interesting application of
your choice, formulate it into a SyGusS problem, and solve it using a SyGusS tool (e.g., http://www.sygus.org/).

Grading Breakdown

Assignment % of Grade

Homework 35%
HWO programming related (10% of the grade)
HW1-5 standard (5% of the grade each)

Midterm exam 25%
Research paper presentation 10%
Final project 30%
TOTAL 100%

Additional Policies

Late assignments will be accepted up to 24 hours after the announced deadline, with a penalty of 20%. Assignments
received more than 24 hours late will receive a grade of 0.

If you feel that an error has been made in grading, please notify the grader within one week after the material is returned.
For exams and final projects, please present a short written appeal to the instructor.

Syllabus for CSCI 599, Page 3 of 5

http://nusmv.fbk.eu/NuSMV/
http://www.cprover.org/cbmc/
http://vlsi.colorado.edu/~vis/)./
http://www.sygus.org/

Course Schedule: A Weekly Breakdown

Topic Reading Slides Assignment
Week 1 Overview/Admin Chapter 1 Lecture_0 HWO out
Kripke structure, CTL Ch.2_A Lecture_1
Week 2 CTL model checking Ch.2_B Lecture_2
Lecture_3 HWO due
Week 3 Fairness constraints Ch.2_C Lecture_4 HW1 out
Counterexamples Lecture_5
Week 4 Simulation relations Ch.3 Lecture_6
Lecture_7 HW1 due
Week 5 Abstraction refinement Ch.3 Lecture_8 HW2 out
Lecture_9
Week 6 LTL model checking Ch.4 Lecture_10
Lecture_11 HW?2 due
Week 7 LTL and omega automata Ch.4 Lecture_12 HW3 out
Lecture_13
Week 8 Binary Decision Diagrams Ch.5 Lecture_14 (Project proposal due)
(Midterm) HW3 due
Week 9 Symbolic model checking Ch.6 Lecture_15 HW4 out
Lecture_16
Week 10 SAT solvers Ch.7 Lecture_17
Lecture_18 HW4 due
Week 11 Bounded model checking Ch.8 Lecture_19 HWS5 out
Lecture_20
Week 12 SMT solvers Lecture_21
Lecture_22
Week 13 Advanced research topics (e.g., Recent papers Student HWS5 due
abstract interpretation) presentations
Week 14 Advanced research topics (e.g., Recent papers Student
concurrent software verification) presentations
Week 15 Advanced research topics (e.g., Recent papers Student
crypto software verification) presentations
FINAL (Project report due) (Project report due)
no exam

Syllabus for CSCI 599, Page 4 of 5

Academic Conduct

Plagiarism — presenting someone else’s ideas as your own, either verbatim or recast in your own words —is a
serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism
in SCampus in Part B, Section 11, “Behavior Violating University Standards”
https://policy.usc.edu/student/scampus/part-b. Other forms of academic dishonesty are equally

unacceptable. See additional information in SCampus and university policies on scientific misconduct,
http://policy.usc.edu/scientific-misconduct.

Discrimination, sexual assault, intimate partner violence, stalking, and harassment are prohibited by the
university. You are encouraged to report all incidents to the Office of Equity and Diversity/Title IX Office
http://equity.usc.edu and/or to the Department of Public Safety http://dps.usc.edu. This is important for the
health and safety of the whole USC community. Faculty and staff must report any information regarding an
incident to the Title IX Coordinator who will provide outreach and information to the affected party. The sexual
assault resource center webpage http://sarc.usc.edu fully describes reporting options. Relationship and Sexual
Violence Services https://engemannshc.usc.edu/rsvp provides 24/7 confidential support.

Support Systems

A number of USC’s schools provide support for students who need help with scholarly writing. Check with your
advisor or program staff to find out more. Students whose primary language is not English should check with the
American Language Institute http://ali.usc.edu, which sponsors courses and workshops specifically for
international graduate students. The Office of Disability Services and Programs http://dsp.usc.edu provides
certification for students with disabilities and helps arrange the relevant accommodations. If an

officially declared emergency makes travel to campus infeasible, USC Emergency Information
http://emergency.usc.edu will provide safety and other updates, including ways in which instruction will be
continued by means of Blackboard, teleconferencing, and other technology.

Syllabus for CSCI 599, Page 5 of 5

https://policy.usc.edu/student/scampus/part-b/
http://policy.usc.edu/scientific-misconduct/
http://equity.usc.edu/
http://dps.usc.edu/
http://sarc.usc.edu/
https://engemannshc.usc.edu/rsvp
http://ali.usc.edu/
http://dsp.usc.edu/
http://emergency.usc.edu/

- Print Pages

Page 3 of 4

Q&A
Talking Model-Checking
Technology

A conversationwith the 2007 ACM A.M. Turing Award winners.

DMUND M. CcLARKE, E. Allen
Emerson, and Joseph Sifakis
were honored for their role in
developing Model-Checking
into a highly effective verifi-
cation technology, widely adopted in
the hardware and software industries.

Let’s talk about the history of formal
software verification.

E. ALLEN EMERSON By the late 1960s,
we recognized that a program should
be viewed as a mathematical object.
It has a syntax and semantics and for-
mally defined behavior engendered by
that syntax and semantics. The idea
was to give a mathematical proof that
a program met a certain correctness
specification. So one would have some
axioms characterizing the way the pro-
gram worked for such-and-such an
instruction and some inference rules,
and one would construct a formal
proof of the system, like philosophers
do sometimes.

Butitneverreally seemed to scale up
to large programs. You ended up with
something like 15-page papers proving
that a half-page program was correct. It
was a great idea but didn’t seem to pan
out in practice.

What about the history of model
checking?

EDMUND M. CLARKE The birth of model
checking was quite painful at times.
Like most research on the boundary be-
tween theory and practice, theoreticians
thought the idea was trivial, and system
builders thought it was too theoretical.
Researchers in formal methods were

last byte

even less receptive. Research in the for-
mal-methods community in the 1980s
usually consisted of designing and
verifying tricky programs with fewer
than 50 lines using only pen and paper.
If anyone asked how such a program
worked in practice on a real computer,
itwould have been interpreted as an in-
sult or perhaps simply as irrelevant.

EAE The idea behind model check-
ing was to avoid having humans con-
struct proofs. It turns out that many
important programs, such as operating
systems, have ongoing behavior and
ideally run forever; they don’t just start
and stop. In 1977, Amir Pnueli suggest-
ed that temporal logic could be a good
way to describe and reason about these
programs. Now, if a program can be
specified in temporal logie, then it can
be realized as a finite state program—
a program with just a finite number
of different configurations. This sug-
gested the idea of model checking—to
check whether a finite state graph is a
model of a temporal logic specifica-
tion. Then one can develop efficient
algorithms to check whether the tem-
poral-logic specification is true of the
state graph by searching through the
state graph for certain patterns.

EMc Yes, Allen and I noticed that
many concurrent programs had what
we called “finite state synchronization
skeletons.” (Joseph Sifakis and J.P.
Queille made the same observation, in-
dependently.) For example, the part of
a mutual-exclusion program that han-
dles synchronization does not depend

[CONTINUED ON P.110]

JULY 2008 | VOL. 51 | NO.7 | COMMUNICATIONS OF THE AcM 112

http://mags.acm.org/communi cations/200807/templ ates/pageviewer print?pg=112& pm=3

9/3/2008

- Print Pages

Page 1 of 4

last byte

[CONTINUED FROM P.112]

on the data being exchanged in the
critical sections. Many communication
protocols had the same property. We
decided to see if we could analyze finite-
state programs by algorithmic means.

How exactly does that work?

EAE You have a program described by
its text and its specification described
by its text in some logic. It’s either true
or false that the program satisfies the
specification, and one wants to deter-
mine that.

JOSEPH SIFaKIs Right. You build a
mathematical model [of the program],
and on this model, you check some
properties, which are also mathemati-
cally specified. To check the property,
you need a model-checking algorithm
that takes as input the mathematical
model you've constructed and then
gives an answer: “yes,” “no,” or “I don’t
know.” If the property is not verified,
you get diagnostics.

And to formalize those specifica-
tions, those properties...

EAE What people really want is the
program they desire, an inherently pre-
formal notion. They have some vague
idea about what sort of program they
want, or perhaps they have some sort
of committee that came up with an
English prose description of what they
want the program to do, but it's not a
mathematical problem.

So one benefit of model checking
is that it forces you to precisely specify
your design requirements.

EMC Yes. But for many people, the
most important benefit is that if the
specification isn't satisfied, the model
checker provides a counterexample
execution trace. In other words, it pro-
vides a trace that shows you exactly
how you get to an error that invalidates

110 COMMUNICATIONS OF THE ACM JULY 2008

your specification, and often you can
use that to find really subtle errors in
design.

How have model-checking algo-
rithms evolved over the years?

emc Model-checking algorithms
have evolved significantly over the past
27 years. The first algorithm for model
checking, developed by Allen and my-
self, and independently by Queille
and Sifakis, was a fixpoint algorithm,
and running time increased with the
square of the number of states. I doubt
if it could have handled a system with
a thousand states. The first imple-
mentation, the EMC Model Checker
(EMC stands for “Extended Model
Checker”), was based on efficient
graph algorithms, developed together
with Allen and Prasad Sistla, another
student of mine, and achieved linear
time complexity in the size of the state
space. We were able to verify designs
with about 40,000 states. Because of
the state-explosion problem, this was
not sufficient in many cases; we were
still not able to handle industrial de-
signs. My student Ken McMillan then
proposed a much more powerful tech-
nique called symbolic model checking.
We were able to check some examples
with 10 to the one-hundredth power
states (1 with a hundred zeros after it).
This was a dramatic breakthrough but
was still unable to handle the state-ex-
plosion problem in many cases. In the
late 1990s, my group developed a tech-
nique called bounded model check-
ing, which enabled us to find errors
in many designs with 10 to the 10,000
power states.

EAE These advances document the
basic contribution of model checking.
For the first time, industrial designs
are being verified on a routine basis.
Organizations, such as IBM, Intel, Mi-
crosoft, and NASA, have key applica-
tions where model checking is useful.
Moreover, there is now a large mod-
el-checking community, including
model-checking users and researchers
contributing to the advance of model-
checking technology.

What are the limitations of model
checking?

Js You have two basic problems:
how to build a mathematical model
of the system and then how to check a
property, a requirement, on that math-
ematical model.

VOL.51 | NO.7

First of all, it can be very challeng-
ing to construct faithful mathematical
models of complex systems. For hard-
ware, it's relatively easy to extract math-
ematical models, and we've made a lot
of progress. For software, the problem
is quite a bit more difficult. It depends
on how the software is written, but we
can verify a lot of complex software.
But for systems consisting of software
running on hardware, we don't know
how to construct faithful mathemati-
cal models for their verification.

The other limitation is in the com-
plexity of the checking algorithm, and
here we have a problem called the
state-explosion problem (that Clarke
referred to earlier), which means that
the number of the states may go expo-
nentially high with the number of com-
ponents of the system.

EMC Software verification is a Grand
Challenge. By combining model check-
ing with static analysis techniques, it
is possible to find errors but not give
a correctness proof. As for the state-
explosion problem, depending on the
logic and model of computation, you
can prove theoretically that it is inevi-
table. But we've developed a number of
techniques to deal with it.

Such as?

emMc The most important technique
is abstraction. The basic idea is that
part of the program or the protocol
you're verifying doesn’t really have any
effect on the particular properties that
you're checking. So what you can do is
simply eliminate those particular parts
from the design.

You can also combine model check-
ing with compositional reasoning,
where you take a complex design and
break it up into smaller components.
Then you check those smaller compo-
nents to deduce the correctness of the
entire system.

How large are the programs we can
currently verify with model checking?

emc Well, first of all, there’s not
always a natural correspondence be-
tween a program’s size and its com-
plexity. But T would say we can often
check circuits with around 10 to the
100th power states (1 with a hundred
zeros after it).

Js Right. We know how to verify sys-
tems of medium complexity today—
it's difficult to say but perhaps a pro-
gram of around 10,000 lines. But we

http://mags.acm.org/communi cations/200807/templ ates/pageviewer print?pg=112& pm=3

9/3/2008

- Print Pages

Page 2 of 4

don't know how to verify very complex
systems.

EMC We're always playing a catch-
up game; we're always behind. We've
developed more powerful techniques,
butit's still difficult to keep up with the
advance of technology and the com-
plexity of new systems.

Canwe use model checking to check
concurrent programs?

EAE Arguably, model checking is a
very natural fit for parallel program-
ming. Typically, we treat parallelism
as a nondeterministic—or, informally,
random-—choice, so, in a way a parallel
program is a more complex sequential
program, with many nondeterministic
behaviors. Model checking is very well
suited to describing and reasoning
about the associated coordination and
synchronization properties of parallel
programs.

EMC Concurrent programs are much
more difficult to debug because it's
difficult for humans to keep track of a
lot of things that are happening all at
once. Model checking is ideal for that.

Js But if you have programs that
interact with the physical environ-
ment, time becomes very important.
For these systems, verification is much
more complicated.

Do we have any algorithms that can
operate directly on implementable
code?

emc To verify the process of trans-
lating a design to code, or to verify
the code itself, is much more diffi-
cult. Some successful model checkers
use this approach, however. The Java
Pathfinder model checker developed
at NASA Ames generates byte code for
a Java program and simulates the byte
code to find errors.

Js The best available technology is
proprietary technology that was de-
veloped by U.S. companies. But most
of the code-level model checkers are
used to verify sequential software. If
you want to verify concurrent software,
then you need to be very careful.

eMc The SLAM model checker de-
veloped at Microsoft Research for find-
ing errors in Windows device drivers is
probably the most successful software
model checker. It is now distributed to
people who want to write device driv-
ers for Windows. However, it is hardly
a general-purpose software model
checker.

EAE In hardware verification, Verilog
and VHDL are widely used design de-
scription languages. Many industrial
model checkers typically accept de-
signs described in these languages.

Is model checking something cur-
rently taught to undergraduates?

Js Formal verification is definitely
taught in Europe. Europe has tradition-
ally had a stronger community in for-
mal methods, and I'd like to say it has
also traditionally had a stronger com-
munity in semantics and languages.

EMC Yes, there’s always been more in-
terest in verification in Europe than in
the U.S. Most of the major universities
here—CMU, Stanford, UC Berkeley, U.
Texas, and so on—do offer courses in
model checking at both undergradu-
ate and graduate levels, but it hasn't fil-
tered down to schools where no one is
doing research in the topic. Part of that
has to do with the availability of appro-
priate textbooks; good books are just
beginning to come out.

EAE Formal methods are being
taught with some frequency [in the
U.S.], but they are not broadly incor-
porated into the core undergraduate
curriculum as required courses to
the extent that operating systems and
data structures are. It is probably more
prevalent at the graduate level. But the
distinction between undergraduate
and graduate is not clear-cut. At many
schools advanced undergrad and be-
ginning grad overlap.

JULY 2008

VOL. 51 NO. 7

last byte

What's in store for model checking
and formal verification?

EMc I intend to continue looking at
ways of making model checking more
powerful. The state explosion phenom-
enon is still a difficult problem. I have
worked on it for 27 years and probably
will continue to do so. Another thing I
want to do is focus on embedded soft-
ware systems in automotive and avion-
ics applications. These programs are
often safety-critical. For example, in a
few years, cars will be “drive-by-wire”;
there will be no mechanical linkage
between the steering wheel and the
tires. The software will definitely need
to be verified. Fortunately, embedded
software is usually somewhat simpler
in structure, without complex point-
ers; I think it may be more amenable to
model checking techniques than gen-
eral software.

Js Personally, I believe we should
look into techniques that allow some
sort of compositional reasoning, where
we infer global properties from local
properties of the system, because of
the inherent limitations of techniques
based on the analysis of a global model.
I'm working on this, as well as on theo-
ries of how to build systems out of com-
ponents, component-based systems.

EAE Model checking has caused a
sea change in the way we think about
establishing program correctness,
from proof-theoretic (deductive proof)
to model-theoretic (graph search). 1
think we will continue to make more
or less steady progress, but the pace of
development of hardware and software
is going to accelerate. Whether we ever
catch up I don't know. Systems that
are being designed are getting bigger
and messier, The seat-of-the-pants ap-
proach will no longer work. We’ll have
to get better at doing things modularly,
and we’ll have to have better abstrac-
tions. IC]

Leah Hoffman writes about science and technology
from Brooklyn, NY.

© 2008 ACM 001-0782/08/0700 $5.00

COMMUNICATIONS OF THE AcM 111

http://mags.acm.org/communi cations/200807/templ ates/pageviewer print?pg=112& pm=3

9/3/2008

