Engineering Analysis I

Prof. P.K. Newton, RRB 221, 740-7782 (newton@usc.edu)

Fall 2017

Time: MW 5:00-6:15 OHE 132

Office Hours:

Prof. Newton MW 4-5, RRB 221

Robert: MWF 10-12, VHE 202

Saakar: T Th 12-2, VHE 202

TAs: Robert Lawson (rlawson@usc.edu); Saakar Byahut (byahut@usc.edu)

Grader: Yun Jiang (yunjiang@usc.edu)

The course will cover techniques from linear algebra, vector analysis, and complex variable theory.

Grading:

- Homework (required) 20%
- Midterm 35%
- Final 45% 4:30-6:30 Wed Dec. 6th
- No extensions on HWs or exams

Books:

Peter V. O'Neil: Advanced Engineering Mathematics

Lecture sequence:

- 1. Finite dimensional vector spaces and linear algebra
 - Basic concepts of linear vector spaces
 - Eigenvalues and eigenvectors
 - The Fredholm alternative: Solving $A\vec{x} = \vec{b}$
 - Least squares methods and linear regression
 - Diagonalization and spectral decomposition
 - Singular values and principal component analysis

2. Vector analysis

- Line integrals in the plane
- Green's theorem in the plane
- Path independence
- Multiply connected domains
- Line integrals in space
- Gauss' divergence theorem
- Green's identities
- Stokes theorem

3. Complex variable theory

- Basics concepts
- Analytic functions and the Cauchy-Riemann equations
- x = f(z) as a mapping
- Derivatives
- Cauchy-Riemann equations
- Harmonic functions
- Integrals of complex functions
- Contour integrals
- Cauchy-Goursat theorem
- Cauchy integral formula
- Residue theory
- Conformal mapping