Managing Data in C++ ITP 365 (3 Units)

Fall 2016

Description

Overview of basic data structures and algorithms including linked lists, stacks, queues, binary trees, and hash tables.

Objective

This course is an overview of core data structures, which are absolutely critical for further study in programming. By the conclusion of the course, students will have an understanding of:

- 1. How and when to use a variety of core data structures.
- 2. The process of how some of these data structures are implemented.
- 3. The mechanisms we can use to evaluate the performance of various algorithms.
- 4. Solving problems through recursion.

Concepts

Arrays/Vectors. Templates. Recursion. Sorting. Linked Lists. Stacks/Queues. Heaps.

Prerequisites

ITP 109x, ITP 115, ITP 165x, or equivalent experience.

Instructor

Office Hours

Listed on Blackboard under Contacts

Listed on Blackboard under Contacts

Listed on Blackboard under Contacts

Lecture See online schedule of classes

Textbook

Programming Abstractions in C++. Eric Roberts. Prentice Hall. ISBN-13: 978-0133454840.

Website

All course material will be posted on Blackboard (http://blackboard.usc.edu). We will use Piazza for discussions/questions outside of class.

Grading

The following percentage breakdown will be used in determining the grade for the course.

Total	100%
Final exam	25%
Midterm exam	25%
Labs	10%
Homework	40%

Grading Scale

The following shows the grading scale to be used to determine the letter grade.

93% and above	Α
90% - 92%	A-
87% - 89%	B+
83% - 86%	В
80% - 82%	B-
77% - 79%	C+
73% - 76%	С
70% - 72%	C-
69%	D+
67% - 68%	D
66%	D-
65% and below	F

Policies

Lab assignments

There will be lab assignments after some lectures. These assignments will be an immediate application of the material presented in lecture. These labs will be graded as credit/no-credit. For credit on each lab you must complete the assignment before class period has ended. Each lab assignment will contribute to your overall grade. There is no way to make up a missed lab, however a lab can be made up provided either prior instructor approval or a documented emergency.

Homework assignments

Each assignment must be completely *individually*. There are no group projects in this class. The assignments will be posted on Blackboard in the "Assignments" section. Each assignment will include instructions, a due date, and a link for electronic submission. Assignments must be submitted using this link.

It is your responsibility to submit your assignments on or before the due date. Homework assignments turned in one day late will have 20% of the total points deducted from the graded score. Assignments turned in two days late will have 50% of the total points deducted from the graded score. After two days, submissions will not be accepted and you will receive a 0.

Submitting assignments

All assignments must be digitally submitted through Blackboard except when otherwise specified by the course staff. Do not email assignments to the instructor or lab assistant. Assignment questions should be posted to the online question forum. Do not send any email to the instructor regarding assignments or ask specific assignment questions during the lecture sessions. You are encouraged to attend the instructor's office hours or lab hours facilitated by course staff for assignment related questions.

Exams

Make-ups are only allowed under extraordinary circumstances. Students must provide a satisfactory reason (as determined by the instructor) along with proper documentation. There are two exams: a midterm and a final. These exams are comprehensive of all topics covered.

Policies (continued)

Lab facilities

You are encouraged to save your work using a USB flash drive or a website such as <u>Dropbox</u>. You must keep a copy of all coursework. You will not be able to save your work on the ITP lab computers. Any work saved to the computer will be erased after restarting the computer.

ITP is not responsible for any work lost.

Students will be able to install all of the necessary software on their own computers in order to be able to work on the homework at any time. Both Mac and PC are supported. Students without their own personal computers are able to utilize the 24-hour USC computing centers.

Incomplete and Missing Grades

Excerpts for this section have been taken from the University Grading Handbook, located at http://www.usc.edu/dept/ARR/grades/gradinghandbook/index.html. Please see the link for more details on this and any other grading concerns.

A grade of Missing Grade (MG) "should only be assigned in unique or unusual situations... for those cases in which a student does not complete work for the course before the semester ends. All missing grades must be resolved by the instructor through the Correction of Grade Process. One calendar year is allowed to resolve a MG. If an MG is not resolved [within] one year the grade is changed to [Unofficial Withdrawal] UW and will be calculated into the grade point average a zero grade points."

A grade of Incomplete (IN) "is assigned when work is no completed because of documented illness or other 'emergency' occurring after the twelfth week of the semester (or 12th week equivalency for any course scheduled for less than 15 weeks)."

Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism – presenting someone else's ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Section 11, Behavior Violating University Standards https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions/. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct/.

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the Office of Equity and Diversity http://equity.usc.edu/ or to the Department of Public Safety http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us. This is important for the safety whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. The Center for Women and

Men http://www.usc.edu/student-affairs/cwm/ provides 24/7 confidential support, and the sexual assault resource center webpage sarc@usc.edu describes reporting options and other resources.

Support Systems

A number of USC's schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute http://dornsife.usc.edu/ali, which sponsors courses and workshops specifically for international graduate students. The Office of Disability Services and Programs http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency Information http://emergency.usc.edu/ will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.

A Further Note on Plagiarism

All submissions will be compared with current, previous, and future students' submissions using a code plagiarism identification program. If your code significantly matches another student's submission, you will be reported to SJACS with the recommended penalty of an F in the course.

You may discuss solutions to specific problems with other students, but you should not look through another's code. The code can be from an online forum or another student, the source is immaterial – all code submitted in this course must be your own. Do not share your code with anyone else in this or future sections of the course, as allowing someone to copy your code carries the same penalty as copying the code yourself.

Managing Data in C++

ITP 365 (3 Units)

Course Outline

Note: Schedule subject to change

W	Topic(s)	Assignment(s)
1	C++ Review; Creating Libraries	Read: Ch. 1, §2.1-2.7, §2.9; §5.1
	Stanford C++ Library; Using Vectors	Do: HW#1 (due end of W3)
2	Strings; Streams	Read: §3.1-3.2; §3.4-3.5; §4.3-4.4; §5.1-5.2
	Using Stacks and Queues	Lab: LP#1
	Using Maps and Sets; Range-based for	Read: §5.4-5.5; §6.1-6.3
3	loops	Lab: LP#2
3	Implementing Classes; Operator	Do: HW#2 (due end of W4)
	Overloading	
	More Classes and Operator Overloading;	Read: §6.3-6.5; §7.1-7.2; §7.3
4	Recursion Basics	Lab: LP#3
	More Recursion	Do: HW#3 (due end of W6)
5	Even More Recursion	Read: §7.7; §8.4; §7.4; §10.1-10.2; §10.4
	Searching and Algorithmic Analysis	Lab: LP#4
6	Sorting; Memory and Pointer Basics	Read: §11.1-11.3; §12.1; §12.3
	Dynamic Memory; Dynamic Memory and	Lab: LP#5
	Classes	Do: HW#4 (due end of W8)
7	const; Implementing Templates	Read: §12.8; §14.1
	Function Objects	Lab: LP#6
8 <u>M</u>	MIDTERM EXAM	Read: §14.4; §12.6
8	Implementing Vector	Do: HW#5 (due end of W10)
9	Linked Lists	Read: §12.2; §12.7
,	Copying; More Linked Lists	
	Doubly Linked Lists	Read: §14.2-14.3
10	Iterators	Lab: LP#7
		Do:HW#6 (due end of W13)
11	STL Containers and Exceptions	Read: §20.1; §15.2-15.4
	Hash Maps	Lab: LP#8
12	Tree and Binary Search Trees	Read: §16.1
	More Binary Search Trees	Lab: LP#9

	Graph Basics	Read: §18.1-§18.2; §18.4	
13	More Graphs	Lab: LP#10	
		Do: HW#7 (due end of W15)	
14	Thanksgiving Holiday (no class)		
14	Thanksgiving Holiday (no class)		
15	Dijkstra's Algorithm	Read: §18.6	
15	Final Review	Lab: LP#11	
FINAL EXAM – as according to the final exam schedule			